Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Migration electrolytes

Practical Processes. With acid leveling dyes no real problems exist because the dyes show good migration, electrolyte is added from the beginning, and rather like Class A direct dyes level dyeing is achieved by prolonging the times at the boil. [Pg.359]

Donnan has investigated the equilibria that result when an ionic combination is shut off from migrating electrolytes by a semipermeable membrane. [Pg.82]

The driving force for migration is established by the different electrochemical potentials (AU) that exist at the two interfaces of the oxide. In other words, the electrochemical potential at the outer interface is controlled by the dominant redox species present in the electrolyte (e.g. O2). [Pg.2724]

Electrophoretic deposition (EPD) is anotlier metliod of casting slurries. EPD is accomplished tlirough tire controlled migration of charged particles under an applied electric field. During EPD, ceramic particles typically deposit on a mandrel to fonn coatings of limited tliickness, or tliin tubular shapes such as solid (3 " - AI2O2 electrolytes for sodium-sulfur batteries. [Pg.2767]

Production. MetaUic strontium was first successfully produced by the electrolysis of fused strontium chloride. Although many attempts were made to develop this process, the deposited metal has a tendency to migrate into the fused electrolyte and the method was not satisfactory. A more effective early method was that described in Reference r5. Strontium oxide is reduced thermally with aluminum according to the following reaction ... [Pg.473]

The electrolyte thus formed can conduct electric current by the movement of ions under the influence of an electric field. A cell using an electrolyte as a conductor and a positive and a negative electrode is called an electrolysis cell. If a direct-current voltage is appHed to a cell having inert electrode material such as platinum, the hydrogen ions (cations) migrate to the cathode where they first accept an electron and then form molecular hydrogen. The ions... [Pg.526]

Ions of an electrolyte are free to move about in solution by Brownian motion and, depending on the charge, have specific direction of motion under the influence of an external electric field. The movement of the ions under the influence of an electric field is responsible for the current flow through the electrolyte. The velocity of migration of an ion is given by ... [Pg.509]

Each ion has its own characteristic mobiUty. The total conductivity of the electrolyte is the sum of the conductivities of the positive and negative ions. This is known as Kohlrausch s Law of Independent Migration of Ions. [Pg.509]

Electrophoretic casting (38,59) is accompHshed by inducing controUed migration of charged particles under an appHed electric field to deposit on a mandrel. Thin tubular shapes and coatings of limited thickness are formed using this technique. Electrophoretic deposition (EPD) is also used to manufacture thin waU, soHd P -alumina [12005-16-2] NaAl Og, electrolytes for sodium—sulfur batteries. [Pg.309]

The compatibihty value is mainly related to the affinity of the dye for the particular fiber because for basic dyes on modified acryhc fibers there is htde possibihty for migration and therefore this does not play a significant part in determining compatibihty. The rate of dyeing of a specific mixture of dyes of the same compatibihty value is not determined by the value itself. The adsorption of cationic dyes is induenced by the presence of others in the dyebath the presence of cationic retarding agents and electrolytes also induences the rate of exhaustion. It is therefore possible to have a combination of dyes with a compatibihty value 5 that under specific dyebath conditions exhausts more rapidly than a combination based on dyes of compatibihty value 3. [Pg.363]

For electrolytic solutions, migration of charged species in an electric field constitutes an additional mechanism of mass transfer. Thus the flux of an ionic species Nj in (g mol)/(cm s) in dilute solutions can be expressed as... [Pg.2006]

An instructive use has been made of the solid electrolyte, Agl, which conducts by the migration of silver ions. If this material is used as an electrolyte in the cell... [Pg.243]

Similarly if tlris electrolyte is made into a composite with SrS, SrC2 or SrH2, the system may be used to measure sulphur, carbon and hydrogen potentials respectively, tire latter two over a resuicted temperamre range where the carbide or hydride are stable. The advantage of tlrese systems over the oxide electrolytes is that the conductivity of the fluoride, which conducts by F ion migration, is considerably higher. [Pg.244]

A consequence of ion migration is electrolytic blister formation. In the case of anodic blisters the coated surface shows pitting, whereas in the case of cathodic blisters there is no change in the metal surface or there is merely the formation of thin oxide layers with annealing color. [Pg.156]

Electrolyte—chemical constituent, usually a liquid, containing ions that migrate in an electric field. [Pg.48]

Transport numbers are intended to measure the fraction of the total ionic current carried by an ion in an electrolyte as it migrates under the influence of an applied electric field. In essence, transport numbers are an indication of the relative ability of an ion to carry charge. The classical way to measure transport numbers is to pass a current between two electrodes contained in separate compartments of a two-compartment cell These two compartments are separated by a barrier that only allows the passage of ions. After a known amount of charge has passed, the composition and/or mass of the electrolytes in the two compartments are analyzed. Erom these data the fraction of the charge transported by the cation and the anion can be calculated. Transport numbers obtained by this method are measured with respect to an external reference point (i.e., the separator), and, therefore, are often referred to as external transport numbers. Two variations of the above method, the Moving Boundary method [66] and the Eiittorff method [66-69], have been used to measure cation (tR+) and anion (tx ) transport numbers in ionic liquids, and these data are listed in Table 3.6-7. [Pg.121]


See other pages where Migration electrolytes is mentioned: [Pg.12]    [Pg.9]    [Pg.343]    [Pg.12]    [Pg.9]    [Pg.343]    [Pg.204]    [Pg.573]    [Pg.584]    [Pg.1925]    [Pg.512]    [Pg.513]    [Pg.580]    [Pg.583]    [Pg.477]    [Pg.384]    [Pg.56]    [Pg.473]    [Pg.526]    [Pg.196]    [Pg.198]    [Pg.294]    [Pg.511]    [Pg.512]    [Pg.530]    [Pg.534]    [Pg.577]    [Pg.578]    [Pg.182]    [Pg.2409]    [Pg.321]    [Pg.267]    [Pg.155]    [Pg.231]    [Pg.523]    [Pg.129]    [Pg.159]   
See also in sourсe #XX -- [ Pg.46 , Pg.47 ]




SEARCH



Migration of the electrolyte

Migration, solid electrolytes

© 2024 chempedia.info