Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microwave desorption techniques

Another interesting application of microwave energy was reported by Mueller et al The authors studied the amount of benzene and alkylated benzenes (BTX) in ambient and exhaled air by microwave desorption coupled to GC-MS. Microwave desorption was proved as an effective sample preparation technique for the analysis of BTX in air samples. A similar desorption technique was applied for the GC analysis of nicotine in indoor air as well. "... [Pg.72]

Other techniques that have been used to determine polycyclic aromatic hydrocarbons in soil extracts include ELISA field screening [86], micellar elec-tr okinetic capillary chromatography [ 87], supersonic jet laser-induced fluorescence [88,89], fluorescence quenching [90], thermal desorption gas chromatography-mass spectrometry [81,90,100], microwave-assisted extraction [91], thermal desorption [92], immunochemical methods [93,94], electrophoresis [96], thin layer chromatography [95], and pyrolysis gas chromatography [35]. [Pg.96]

The most common extraction techniques for semivolatile and nonvolatile compounds from solid samples that can be coupled on-line with chromatography are liquid-solid extractions enhanced by microwaves, ultrasound sonication or with elevated temperature and pressures, and extraction with supercritical fluid. Elevated temperatures and the associated high mass-transfer rates are often essential when the goal is quantitative and reproducible extraction. In the case of volatile compounds, the sample pretreatment is typically easier, and solvent-free extraction methods, such as head-space extraction and thermal desorption/extraction cmi be applied. In on-line systems, the extraction can be performed in either static or dynamic mode, as long as the extraction system allows the on-line transfer of the extract to the chromatographic system. Most applications utilize dynamic extraction. However, dynamic extraction is advantageous in many respects, since the analytes are removed as soon as they are transferred from the sample to the extractant (solvent, fluid or gas) and the sample is continuously exposed to fresh solvent favouring further transfer of analytes from the sample matrix to the solvent. [Pg.111]

Microwave-assisted desorption coupled to in situ headspace solid-phase microextraction (HS-SPME) was first proposed as a possible alternative pretreatment of samples collected from workplace monitoring. Therefore, pretreatment that takes a short time and uses little or no organic solvents has led to the recent development of a new extraction technique. Solid-phase micro-extraction (SPME) coupled with GC analysis has been used successfully to analyze pollutants in environmental matrices. MHS has been developed to achieve one-step, in situ headspace sampling of semivolatile organic compounds in aqueous samples, vegetables, and soil [7, 55-58]. [Pg.969]

Accelerated solvent extraction (ASE) is a relatively recent advance in sample preparation for trace environmental analysis. This techiuque uses conventional solvents at elevated pressures and temperatures to extract solid samples quickly. The process takes advantage of the increased analyte solubilities at temperatures well above the boiling points of common solvents. Under these conditions, the kinetic processes for the desorption of analytes from the matrix are accelerated. Currently a commercial unit is available in which automated extractions can be carried out on 24 samples sequentially (Richter et al., 1995, 1996). This technique offers some significant advantages over SEE and MAP. SEE uses supercritical CO2, which is a nonpolar fluid, whereas MAP requires the presence of a polar solvent that couples with microwave to promote heating. By comparison, ASE uses the same solvent as traditional Soxhlet extractions, which means a (firect transfer of methodology is feasible without any of the restrictions or limitations of the two other methods. Method development time is therefore shortened. [Pg.373]

For other techniques, such as microwave spectroscopy and gas-phase electron diffraction, involatile samples can be subjected to laser desorption, but there might still be problems in generating sufficient vapour pressure. [Pg.29]

While liquid-liquid, headspace, and sorbent-based extractions are perhaps the most commonly nsed and pnbhshed sample preparation techniqnes for GC, there are numerous additional techniques to consider. While we do not attempt to fully describe every technique that has ever been nsed, the techniques described below are certainly of importance in the arsenal of sample preparation techniques for GC. These include supercritical-fluid extraction, accelerated solvent extraction, microwave-assisted extraction, pyrolysis, thermal desorption, and membrane-based extractions, pins comments on antomation and derivatization. [Pg.588]


See other pages where Microwave desorption techniques is mentioned: [Pg.45]    [Pg.45]    [Pg.42]    [Pg.160]    [Pg.110]    [Pg.69]    [Pg.139]    [Pg.45]    [Pg.128]    [Pg.300]    [Pg.22]    [Pg.218]    [Pg.99]    [Pg.73]    [Pg.312]    [Pg.143]    [Pg.543]    [Pg.152]    [Pg.134]    [Pg.77]    [Pg.56]    [Pg.178]   
See also in sourсe #XX -- [ Pg.45 , Pg.46 ]




SEARCH



Desorption techniques

Microwave techniques

© 2024 chempedia.info