Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microstructure of Chains

Heterogeneity with respect to the molecular structure [20,21]. One may assume that topological heterogeneity is predetermined genetically by the microstructure of chains. [Pg.52]

Segura el al. combines Tarazona s WDA DFT for hard-spheres with Wertheim s thermodynamic perturbation theory and has been used in a number of studies of associating fluids in pores and with functionalized walls in the limit of complete association a DFT for polymeric fluids is obtained in this method. Based on these works, Chapman and co-workers have presented the interfacial-SAFT (iSAFT) equation, which is a DFT for polyatomic fluids formulated by considering the polyatomic system as a mixture of associating atomic fluids in the limit of complete association this approach allows the study of the microstructure of chain fluids. Interfacial phenomena in complex mixtures with structured phases, including lipids near surfaces, model lipid bilayers, copolymer thin films and di-block copolymers, have all been studied with the iSAFT approach. [Pg.248]

Material parameters defined by Equations (1.11) and (1.12) arise from anisotropy (i.e. direction dependency) of the microstructure of long-chain polymers subjected to liigh shear deformations. Generalized Newtonian constitutive equations cannot predict any normal stress acting along the direction perpendicular to the shearing surface in a viscometric flow. Thus the primary and secondary normal stress coefficients are only used in conjunction with viscoelastic constitutive models. [Pg.6]

The three levels of structure listed above are also useful categories for describing nonprotein polymers. Thus details of the microstructure of a chain is a description of the primary structure. The overall shape assumed by an individual molecule as a result of the rotation around individual bonds is the secondary structure. Structures that are locked in by chemical cross-links are tertiary structures. [Pg.19]

The effect of branching is to increase the number of chain ends and, therefore, free volume, which decreases Tg. Conversely, crosslinking ties together separate molecules, decreases the number of loose ends, and raises Tg. Copolymers show different effects on T, depending on the microstructure... [Pg.255]

All polymer molecules have unique features of one sort or another at the level of individual repeat units. Occasional head-to-head or tail-to-tail orientations, random branching, and the distinctiveness of chain ends are all examples of such details. In this chapter we shall focus attention on two other situations which introduce variation in structure into polymers at the level of the repeat unit the presence of two different monomers or the regulation of configuration of successive repeat units. In the former case copolymers are produced, and in the latter polymers with differences in tacticity. Although the products are quite different materials, their microstructure can be discussed in very similar terms. Hence it is convenient to discuss the two topics in the same chapter. [Pg.423]

Koenig, J. L., Chemical Microstructure of Polymer Chains, Wiley, New York, 1980. [Pg.502]

Some very peculiar features have been discovered in the microstructures of copolymers. Thus, Hanna et al. (1993) showed that a random copolymer of two aromatic monomers has chains in which random but similar sequences of the two monomers on distinct chains find each other and come into register to form a... [Pg.327]

The yield of cross-linking depends on the microstructure of polybutadiene and purity of the polymer as well as on whether it is irradiated in air or in vacuum. The cross-link yield, G(X), has been calculated to be lowest for trans and highest for vinyl isomer [339]. The introduction of styrene into the butadiene chain leads to a greater reduction in the yield of cross-linking, than the physical blends of polybutadiene and polystyrene [340]. This is due to the intra- and probably also intermolecular energy transfer from the butadiene to the styrene constituent and to the radiation stability of the latter unit. [Pg.880]

The microstructure parameter increases from 0 to 0.6, along with a reduction in silicon density. The material in this region consists of two phases, one which contains only SiH bonds, and one with SiH2 bonds (chains) and voids. In the third region (Ch > 0.22) the material mainly consists of chains of SiHa bonds, and the material density is much lower. [Pg.10]

Statistical characteristics of the second type define the microstructure of copolymer chains. The best known characteristics in this category are the fractions P [/k) (probabilities) of sequences Uk involving k monomeric units. The simplest among them are the dyads U2, the complete set of which, for example, for a binary copolymer is composed of four pairs of monomeric units M2M, M2M2. The number of the types of k-ad in chains of m-component copolymers grows exponentially as mk so that with practical purposes in mind it is generally enough to restrict the consideration to sequences Uk] with moderate values of k. Their calculation turns out to be rather useful... [Pg.165]

It should be emphasized that for Markovian copolymers a knowledge of the values of structural parameters of such a kind will suffice to find the probability of any sequence Uk, i.e. for an exhaustive description of the microstructure of the chains of these copolymers with a given average composition. As for the composition distribution of Markovian copolymers, this obeys for any fraction of Z-mers the Gaussian formula whose covariance matrix elements are Dap/l where Dap depend solely on the values of structural parameters [2]. The calculation of their dependence on time, and the stoichiometric and kinetic parameters of the reaction system permits a complete statistical description of the chemical structure of Markovian copolymers to be accomplished. The above reasoning reveals to which extent the mathematical modeling of the processes of the copolymer synthesis is easier to perform provided the alternation of units in macromolecules is known to obey Markovian statistics. [Pg.167]

Koenig JL (1980) Chemical microstructure of polymer chains. John Wiley Sons, New York... [Pg.202]

On the basis of the kinetic characteristics of chain polymerisation reactions, it is possible to predict the final microstructures available by a so-called random process from a simple mixture of two comonomers. Indeed, the global mechanism of copolymerisation can be illustrated as presented in Figure 30. [Pg.50]

On the basis of the microstructure of the prevailing isotactic polymer chains, it is well established that the steric control of the heterogeneous Ziegler-Natta catalysts is due to the chirality of the catalytic site and not to the configuration of the last inserted monomer unit.28,29,95... [Pg.39]

Since about 1960 nuclear magnetic resonance (NMR) spectroscopy has become an important tool for the study of chain configuration, sequence distribution and microstructure of polymers. Its use started from early broad-line studies of the one-set of molecular motion in solid polymers and passed through the solution studies of proton NMR, to the application of the more difficult but more powerful carbon-13 NMR methods to both liquids and solids. [Pg.80]

The mixed liposomal solutions were prepared by the ethanol-injection method(13) in order to obtain completely transparent solutions. It is interesting to note that miscibility of the photochromic amphiphiles with DPPC depend on the position of bulky azobenzene. If azobenzene is incorporated close to the end of long alkyl chain, a stable mixed bilayer state cannot be formed. On the other hand, when the azobenzene moiety is located near the head group or at the center of the hydrocarbon tail, the azobenzene amphiphiles are successfully incorporated into the bilayer membrane. No individual micelle formation nor phase separation in the bilayer was observed at 25 °C by absorption spectroscopy. However, the microstructure of the mixed liposomes depends on the type of azobenzene amphiphiles. [Pg.216]


See other pages where Microstructure of Chains is mentioned: [Pg.36]    [Pg.167]    [Pg.187]    [Pg.32]    [Pg.59]    [Pg.779]    [Pg.36]    [Pg.167]    [Pg.187]    [Pg.32]    [Pg.59]    [Pg.779]    [Pg.203]    [Pg.415]    [Pg.145]    [Pg.284]    [Pg.570]    [Pg.63]    [Pg.143]    [Pg.60]    [Pg.167]    [Pg.841]    [Pg.855]    [Pg.166]    [Pg.190]    [Pg.329]    [Pg.255]    [Pg.320]    [Pg.444]    [Pg.583]    [Pg.74]    [Pg.29]    [Pg.133]    [Pg.222]    [Pg.364]    [Pg.236]    [Pg.117]   


SEARCH



Chain microstructure of polydienes

Effect of Chain Microstructure

Effect of Chain Microstructures and Operation Conditions

© 2024 chempedia.info