Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calorimetry microcalorimetry

From Equation (17) an analysis can be made if the quantity of ML can be determined as a function of ligand added at each aliquot. However considerable errors may arise as this quantity must be assayed, after each aliquot of ligand is added. However non-invasive techniques such as isothermal microcalorimetry calorimetry can be used to directly determine the quantity of ML without disturbing the system. For a calorimetric analysis an estimation of the enthalpy change for the macromolecule-ligand interaction must be made. An assumption can be made that at the start of the study, the initial aliquot of ligand added to the system, if sufficiently small, will completely bind to the macromolecule (as initially the macromolecule will be in excess). The enthalpy change associated with this interaction can then be used to calculate the A// for the interaction (Equation (3)). [Pg.974]

Thermochemical parameters of some unstable nitrile oxides were evaluated using corresponding data for stable molecules. Thus, for 2,4,6-trimethylbenzo-nitrile N-oxide and 2,4,6-trimethoxybenzonitrile N-oxide, the standard molar enthalpies of combustion and sublimation at 298.15 K were measured by static-bomb calorimetry and by microcalorimetry, respectively, this made it possible to derive the molar dissociation enthalpies of the N—O bonds, D(N—O) (17). [Pg.2]

Cooper, A., M.A. Nutley, and A. Wadood. 2000. Differential scanning microcalorimetry. In Protein-Ligand Interactions Hydrodynamics and Calorimetry. S.E. Harding and B.Z. Chowdhry, editors. Oxford University Press, Oxford, 287-318. [Pg.382]

Contact angle measurements Isothermal microcalorimetry Gravimetric sorption Inverse gas chromatography Differential scanning calorimetry Thermogravimetric analysis Isothermal microcalorimetry Infra red analysis X-ray diffraction... [Pg.69]

Microcalorimetry has gained importance as one of the most reliable method for the study of gas-solid interactions due to the development of commercial instrumentation able to measure small heat quantities and also the adsorbed amounts. There are basically three types of calorimeters sensitive enough (i.e., microcalorimeters) to measure differential heats of adsorption of simple gas molecules on powdered solids isoperibol calorimeters [131,132], constant temperature calorimeters [133], and heat-flow calorimeters [134,135]. During the early days of adsorption calorimetry, the most widely used calorimeters were of the isoperibol type [136-138] and their use in heterogeneous catalysis has been discussed in [134]. Many of these calorimeters consist of an inner vessel that is imperfectly insulated from its surroundings, the latter usually maintained at a constant temperature. These calorimeters usually do not have high resolution or accuracy. [Pg.212]

An apparatus with high sensitivity is the heat-flow microcalorimeter originally developed by Calvet and Prat [139] based on the design of Tian [140]. Several Tian-Calvet type microcalorimeters have been designed [141-144]. In the Calvet microcalorimeter, heat flow is measured between the system and the heat block itself. The principles and theory of heat-flow microcalorimetry, the analysis of calorimetric data, as well as the merits and limitations of the various applications of adsorption calorimetry to the study of heterogeneous catalysis have been discussed in several reviews [61,118,134,135,141,145]. The Tian-Calvet type calorimeters are preferred because they have been shown to be reliable, can be used with a wide variety of solids, can follow both slow and fast processes, and can be operated over a reasonably broad temperature range [118,135]. The apparatus is composed by an experimental vessel, where the system is located, which is contained into a calorimetric block (Figure 13.3 [146]). [Pg.212]

Adsorption calorimetry allows the total number of adsorption sites and potentially catalytically active centers to be estimated the values obtained depend on the nature and size of the probe molecule. Appropriate probe molecules to be selected for adsorption microcalorimetry should be stable over time and with temperature. The probe adsorbed on the catalyst surface should also have sufficient mobility to equilibrate with active sites at the given temperature [103]. [Pg.224]

In this chapter, a brief summary of studies that made use of calorimetry to characterize compounds comprising group IIIA elements (zeolites, nitrides, and oxides catalysts) was presented. It was demonstrated that adsorption microcalorimetry can be used as an efficient technique to characterize the acid-base strength of different types of materials and to provide information consistent with the catalytic data. [Pg.248]

It was proven that microcalorimetry technique is quite well developed and very useful in providing information on the strength and distribution of acidic and basic sites of catalysts. When interpreting calorimetric data, caution needs to be exercised. In general, one must be careful to determine if the experiments are conducted under such conditions that equilibration between the probe molecules and the adsorption sites can be attained. By itself, calorimetry only provides heats of interaction. It does not provide any information about the molecular nature of the species involved. Therefore, other complementary techniques should be used to help interpreting the calorimetric data. For example, IR spectroscopy needs to be used to determine whether a basic probe molecule adsorbs on a Brpnsted or Lewis acid site. [Pg.248]

Table 2 Comparison of differential calorimetry and isothermal microcalorimetry (4)... Table 2 Comparison of differential calorimetry and isothermal microcalorimetry (4)...
There are a number of excellent books that provide information on pharmaceutical thermal analysis but many do not include sections on isothermal microcalorimetry. Probably the most useful textbook in print is The Handbook of Thermal Analysis. Vol 1 Principles and practice, edited by ME Brown, Elsevier Science (Amsterdam), 1998, which comprehensively covers all aspects of thermal analysis. A more specialised, but now out of print, text is Biological Microcalorimetry, edited by AE Beezer, Academic Press (London), 1982 and an excellent chapter can be found in Principles of Thermal Analysis and Calorimetry, edited by PJ Haines, RSC (Cambridge), 2002. The subject of pharmaceutical uses of DSC is more widely covered with excellent texts including Biocalorimetry, edited by JE Ladbury and BZ Chowdhry, Wiley (Chichester), 1998 and Pharmaceutical Thermal Analysis, edited by JL Ford and P Timmins, Ellis Harwood, 1989 (although a new edition of this text is due, edited by JL Ford, P Timmins and G Buckton). [Pg.351]

The development, manufacturing, and storage control of drugs has direct bearings on medicine, and some important uses of calorimetry in the pharmaceutical industry will therefore be pointed out. As a result of recent developments in microcalorimetry, techniques for thermodynamic characterization of binding reactions between drugs and biopolymers have become readily accessible. To an increasing extent, titration microcalorimetry is now used in the pharmaceutical industry. [Pg.297]

A system that links microcalorimetry to the volumetric measurement of quantities of adsorbed reactants makes it possible to study gas-solid interactions and catalyhc reactions. This system works under stahc vacuum. The admission of gases into the calorimeter can be performed either in a discontinuous way (by successive doses) by means of a valve, or in a continuous manner by means of a capillary. The classical technique of adsorption calorimetry by doses is the most appropriate way to measure the energy of interaction between the adsorbed species and the catalyst. If the surface can be a priori considered as heterogeneous, the heat of adsorption, the amount adsorbed and the kinetics of adsorption must be measured for very small successive doses of the adsorbate so as to obtain accu-... [Pg.394]

An alternative method is flow adsorption microcalorimetry, which involves the use of a carrier gas passing continuously through the adsorption cell. The catalyst is placed on a glass frit in a gas circulation cell in the calorimeter. In order to determine the amounts of gas adsorbed, flow calorimetry must be used in combination with another technique, most frequently TG, MS or GC [8, 18]. [Pg.399]

The evolution in calorimetry technology has also led to the development of protocols for quantitative analysis (Buckton and Darcy 1999). Fiebich and Mutz (1999) determined the amorphous content of desferal using both isothermal microcalorimetry and water vapour sorption gravimetry with a level of detection of less than 1 per cent amorphous material. The heat capacity jump associated with the glass transition of amorphous materials MTDSC was used to quantify the amorphous content of a micronised drag substance with a limit of detection of 3 per cent w/w of amorphous... [Pg.254]

Figure 8 Structural relaxation times for quench-cooled glassy disaccharides as determined from enthalpy relaxation data. Structural relaxation times were obtained by a fit of the data to the stretched exponential function (see [37,50]). ( ) Data for sucrose obtained by differential scanning calorimetry on annealed samples [37], (O) Data for sucrose obtained by isothermal microcalorimetry [50]. (A) Data for trehalose obtained by isothermal microcalorimetry [50]. Figure 8 Structural relaxation times for quench-cooled glassy disaccharides as determined from enthalpy relaxation data. Structural relaxation times were obtained by a fit of the data to the stretched exponential function (see [37,50]). ( ) Data for sucrose obtained by differential scanning calorimetry on annealed samples [37], (O) Data for sucrose obtained by isothermal microcalorimetry [50]. (A) Data for trehalose obtained by isothermal microcalorimetry [50].
The porous structure of active carbons can be characterized by various techniques adsorption of gases (Ni, Ar, Kr, CO ) [5.39] or vapors (benzene, water) [5,39] by static (volumetric or gravimetric) or dynamic methods [39] adsorption from liquid solutions of solutes with a limited solubility and of solutes that are completely miscible with the solvent in all proportions [39] gas chromatography [40] immersion calorimetry [3,41J flow microcalorimetry [42] temperature-programmed desorption [43] mercury porosimetry [36,41] transmission electron microscopy (TEM) [44] and scanning electron microscopy (SEM) [44] small-angle x-ray scattering (SAXS) [44] x-ray diffraction (XRD) [44]. [Pg.130]

The most common applications of calorimetry in the pharmaceutical sciences are formd in the subfields of differential scanning calorimetry (DSC) and microcalorimetry. State-of-the-art DSC instruments and microcalorimeters are extremely sensitive and are powerful analytical tools for the pharmaceutical scientist. [Pg.393]

Differential scanning calorimetry usually involves heating and/or cooling samples in a controlled manner, whereas microcalorimetry maintains a constant sample temperature. The DSC instruments are considered to be part of the Thermal Analysis armamentarium for additional information, the reader should refer to the Thermal Analysis section of this Encyclopedia. [Pg.393]

Interactions between water vapor and amorphous pharmaceutical solids were evaluated using isothermal microcalorimetry. " The desorption of water from theophylline monohydrate has been investigated using microcalorimetric approaches.The properties of surfactants and surface-active drugs in solution were studied by Attwood et al. " using calorimetry, while titration microcalorimetry has been utilized to elucidate the nature of specific interactions in several pharmaceutical polymer-surfactants systems. " Drug decomposition was evaluated as a function of different... [Pg.403]

Microcalorimetry is a growing technique complementary to DSC for the characterization of pharmaceuticals. Larger sample volume and high sensitivity means that phenomena of very low energy (unmeasurable by DSC) may be studied. The output of the instrument is measured by the rate of heat change dq/dt) as a function of time with a high sensitivity better than 0.1 pW. Microcalorimery can be applied to isolated systems in specific atmospheres or for batch mode where reactants are mixed in the calorimeter. Solution calorimetry can be used in adiabatic or isoperibol modes in microcalorimeters at constant temperature. (See the corresponding article about calorimetry of this edition.)... [Pg.3729]

Microcalorimetry provides a rapid, non-invasive approach to the study of such systems moreover, flow calorimetry has a sensitivity that is superior to many other traditional techniques allowing accurate, quantitative information to be derived from the raw data. [Pg.111]

In addition to the analytical applications, there was sporadic work on the employment of flow calorimetry for the investigation of enzyme kinetics [23,24]. In 1985 Owusu et al. [25] published the first report on the use of flow microcalorimetry for the study of immobilized enzyme kinetics approaching... [Pg.71]

Flow microcalorimetry, which makes many rapid and accurate measurements of the activity of immobilized biocatalysts, provides a tool for researchers that can be used to discriminate between different preparatives of immobilized biocatalysts. Table 3 shows previous experiments where the characterization of kinetic properties by flow micro calorimetry was used to compare different techniques of purified enzyme immobilization [27, 30, 31, 35] as well as the immobilization of enzymes fixed in cells [28,29,40]. More details can be found in our recent review article [41]. [Pg.92]


See other pages where Calorimetry microcalorimetry is mentioned: [Pg.268]    [Pg.240]    [Pg.39]    [Pg.165]    [Pg.235]    [Pg.161]    [Pg.97]    [Pg.327]    [Pg.328]    [Pg.102]    [Pg.290]    [Pg.292]    [Pg.299]    [Pg.299]    [Pg.29]    [Pg.404]    [Pg.253]    [Pg.153]    [Pg.457]    [Pg.250]    [Pg.172]    [Pg.175]    [Pg.401]    [Pg.3308]    [Pg.104]   


SEARCH



Adsorption calorimetry Microcalorimetry

Calorimetry isothermal microcalorimetry

Microcalorimetry

© 2024 chempedia.info