Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael results

For a constant diffusion coefficient Eq. (5.6.6) can be integrated over the thin film (diffusion layer) of thickness to give Michaels result... [Pg.185]

In the above reaction one molecular proportion of sodium ethoxide is employed this is Michael s original method for conducting the reaction, which is reversible and particularly so under these conditions, and in certain circumstances may lead to apparently abnormal results. With smaller amounts of sodium alkoxide (1/5 mol or so the so-called catal3rtic method) or in the presence of secondary amines, the equilibrium is usually more on the side of the adduct, and good yields of adducts are frequently obtained. An example of the Michael addition of the latter type is to be found in the formation of ethyl propane-1 1 3 3 tetracarboxylate (II) from formaldehyde and ethyl malonate in the presence of diethylamine. Ethyl methylene-malonate (I) is formed intermediately by the simple Knoevenagel reaction and this Is followed by the Michael addition. Acid hydrolysis of (II) gives glutaric acid (III). [Pg.912]

Stabilizing the resulting enolate of the Michael Addition product can shift the equilibrium as in the case of the vinyl silane shown below... [Pg.166]

In the reaction of Q,/3-unsaturated ketones and esters, sometimes simple Michael-type addition (insertion and hydrogenolysis, or hydroarylation, and hydroalkenylation) of alkenes is observed[53,54]. For example, a simple addition product 56 to methyl vinyl ketone was obtained by the reaction of the heteroaromatic iodide 55[S5]. The corresponding bromide affords the usual insertion-elimination product. Saturated ketones are obtained cleanly by hydroarylation of o,/3l-unsaturated ketones with aryl halides in the presence of sodium formate, which hydrogenolyses the R—Pd—I intermediate to R— Pd—H[56]. Intramolecular hydroarylation is a useful reaction. The diiodide 57 reacts smoothly with sodium formate to give a model compound for the afla-toxin 58. (see Section 1.1.6)[57]. Use of triethylammonium formate and BU4NCI gives better results. [Pg.136]

Methacryhc acid and its ester derivatives are Ctfjy -unsaturated carbonyl compounds and exhibit the reactivity typical of this class of compounds, ie, Michael and Michael-type conjugate addition reactions and a variety of cycloaddition and related reactions. Although less reactive than the corresponding acrylates as the result of the electron-donating effect and the steric hindrance of the a-methyl group, methacrylates readily undergo a wide variety of reactions and are valuable intermediates in many synthetic procedures. [Pg.246]

Primary cycloaUphatic amines react with phosgene to form isocyanates. Reaction of isocyanates with primary and secondary amines forms ureas. Dehydration of ureas or dehydrosulfuri2ation of thioureas results in carhodiimides. The nucleophilicity that deterrnines rapid amine reactivity with acid chlorides and isocyanates also promotes epoxide ring opening to form hydroxyalkyl- and dihydroxyalkylaniines. Michael addition to acrylonitrile yields stable cyanoethylcycloalkylarnines. [Pg.208]

Also, Michael addition reactions occur between Ai-acylaminomalonic acid esters and unsaturated compounds, ie, acrolein [107-02-8] acrylonitrile [107-13-1y, acryhc acid esters, and amino acids result from hydrolysis of the addition products. [Pg.277]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

The Michael-type addition of maleic hydrazide and other pyridazinones to activated alkenes, such as methyl acrylate, acrylonitrile, methyl vinyl ketone and other a,/3-unsatu-rated carbonyl compounds, results in the formation of mono-lV-substituted products. [Pg.15]

A thiol, usually under basic catalysis, can undergo Michael addition to an activated double bond, resulting in protection of the sulfhydryl group as a substituted 5-ethyl derivative. [Pg.295]

Isbell, W.M., Christman, D.R., Babcock, S.G., Michaels, T.E., and Green, S.J., Measurements of Dynamic Properties of Materials, Vol 1 Summary of Results, US Defense Atomic Support Agency Report No. DASA-2501-1, Washington, DC, 28 pp., July 1970. [Pg.365]

A typical maleimide resin is synthesized by the Michael addition of MDA and BMI (Fig. 4). If the stoichiometrically equal amounts of MDA and BMI are added into the reaction solvent under controlled temperature, linear, high molecular weight polyaminoimide (PAI) results. To obtain crosslinkable oligomer (pre-polymer) with maleimide end groups, a calculated 1.1-1.8 times an excess... [Pg.814]

Michael F. Card and Robert M. Jones, Experimental and Theoretical Results for Buckling of Eccentrically Stiffened Cylinders, NASA TN D-3639, October 1966. [Pg.275]

We would like to thank Gerhard Gompper, Johann Hoye, Andrzej Poniewierski, Michael Schick, and George Stell for fruitful collaboration which led to the results presented in this chapter. This work was partially supported by the Komitet Badah Naukowych under grants 2P03B12516 and 3T09A07316 and by the Maria Sklodowska Curie Joint Fund II. [Pg.739]

Ground States of Molecules 39 MNDO Results for Molecules containing Hydrogen, Carbon, Nitrogen and Oxygen Michael J. S. Dewar and Walter Thiel Journal of the American Chemical Society 99 (1977) 4907-4917... [Pg.152]

At least two pathways have been proposed for the Nenitzescu reaction. The mechanism outlined below is generally accepted." Illustrated here is the indolization of the 1,4-benzoquinone (4) with ethyl 3-aminocrotonate (5). The mechanism consists of four stages (I) Michael addition of the carbon terminal of the enamine 5 to quinone 4 (II) Oxidation of the resulting hydroquinone 10 to the quinone 11 either by the starting quinone 4 or the quinonimmonium intermediate 13, which is generated at a later stage (HI) Cyclization of the quinone adduct 11, if in the cw-configuration, to the carbinolamine 12 or quinonimmonium intermediate 13 (IV) Reduction of the intermediates 12 or 13 to the 5-hydroxyindole 6 by the initial hydroquinone adduct 7 (or 8, 9,10). [Pg.145]

The best yields of 5-hydroxyindoles are obtained when equimolar amounts of the quinone and enamine are used. An excess of enamine gives rise to non-indolic products derived from reaction of two enamine units and one quinone unit or the product which results from the initial Michael addition of the enamine to the quinone. Use of excess quinone has been reported less frequently, but limited studies indicate no advantage. When 2,5-dichloro-l,4-benzoquinone (32) was treated with a 50% excess of ethyl 3-... [Pg.149]

Once formed, 7 and 8 undergo a Michael reaction that gives rise to ketoenamine 9. Ring closure, to form 10, and loss of water then afforded 1,4-dihydropyridine 11. The presence of 9 and 10 could not be detected thus ring closure and dehydration were deduced to proceed faster than the Michael addition. This has the result of making the Michael addition the rate-determining step in this sequence. Conversely, if the reaction is run in the presence of a small amount of diethylamine, compounds related to 10 could be isolated. Diol 20 has been isolated in an unique case (R = CFb). Attempts to dehydrate this compound under a variety of conditions were unsuccessful. Stereoelectronic effects related to the dehydration may be the cause. In related heterocyclic ring formations, it has been determined that dehydration (20 —> 10) is about 10 times slower than diol formation (19 —> 20). Therefore, one would expect 20 to... [Pg.306]

From a mechanistic standpoint, ammonia serves two functions 1) it behaves as a base to catalyze an aldol reaction between 2 equivalents of 31 to generate the corresponding enal 33, and 2) it is the source of nitrogen for the resultant pyridyl ring. This occurs through formation of enamine 34 with a third equivalent of 31. The Michael addition of 34 to 33 followed by cyclization gives rise to 32. [Pg.308]

Recently the Bohlmann-Rahtz synthesis has received greater attention. Baldwin has employed this method for the construction of heterocyclic substituted a-amino acids. Exposure of alkynyl ketone 39 to 3-aminocrotoyl ester 40 resulted in the Michael product 41. Thermolysis then gave rise to the desired pyridyl-P-alanines 42. [Pg.309]

Pyridine and dimethyl acetylenedicarboxylate in methanol yield - a mixture of (33) and (34). It is tempting to assume that a zwitterion (30) is first formed and that this then adds a proton followed by a methoxide ion (Michael addition) under the influence of both the positive charge on the ring and the assisting ester group. The resulting structure (31) could then add another molecule of the ester and cyclize, as indicated, to (32). Subsequent aromatization accompanied by loss of one, or the other, substituent at position 3 would lead to the two products, (33) and (34), actually isolated. [Pg.132]

More serious limitations and precautions apply to compounds in which not all three R, R, and R" groups are aromatic. Autocondensation of benzylideneacetone (111) yields an unstable chloroferrate which may be 113 or 115, according to whether a Michael addition to 112 or a crotonic condensation to 114 is first involved. Since compound 113 could readily be prepared from 2,6-dimethyl-4-phenylpyrylium and benzaldehyde, the structure of the reaction product should be easily soluble. Another equivocal product is formed from two moles of benzylideneacetone, but a definite structure (116) results from chalcone and benzylideneacetone. ... [Pg.298]

Especially with the ordinary aldol reaction a number of side reactions can be observed, as a result of the high reactivity of starting materials and products. For instance, the a ,/3-unsaturated carbonyl compounds 4 can undergo further aldol reactions by reacting as vinylogous components. In addition compounds 4 are potential substrates for the Michael reaction. [Pg.9]

Another important feature of the Nef reaction is the possible use of a CH-NO2 function as an umpoled carbonyl function. A proton at a carbon a to a nitro group is acidic, and can be abstracted by base. The resulting anionic species has a nucleophilic carbon, and can react at that position with electrophiles. In contrast the carbon center of a carbonyl group is electrophilic, and thus reactive towards nucleophiles. 1,4-Diketones 4 can for example be prepared from a-acidic nitro compounds by a Michael additionfNef reaction sequence " ... [Pg.211]

The reaction of a cyclic ketone—e.g. cyclohexanone 1—with methyl vinyl ketone 2 resulting in a ring closure to yield a bicyclic a ,/3-unsaturated ketone 4, is called the Robinson annulation This reaction has found wide application in the synthesis of terpenes, and especially of steroids. Mechanistically the Robinson annulation consists of two consecutive reactions, a Michael addition followed by an Aldol reaction. Initially, upon treatment with a base, the cyclic ketone 1 is deprotonated to give an enolate, which undergoes a conjugate addition to the methyl vinyl ketone, i.e. a Michael addition, to give a 1,5-diketone 3 ... [Pg.240]

Exceptions to this rule may be a result of steric hindrance. However when the Stork enamine method is applied, for example with enamine 10, the less substituted a-carbon becomes connected to the Michael acceptor ... [Pg.242]

II result of some side effects, their use is restricted to veteri-ii.iry practice. Michael addition of dimethylamine to ethyl cro-... [Pg.105]

The Michael reaction with enamines is exemplified in this procedure. In a second (spontaneous) step of the reaction, an aldol-type condensation occurs resulting in cyclization. Finally, the morpholine enamine of the product forms and is hydrolized by the addition of water to yield a mixture of octalones, which is separated by fractional crystallization. J -Octalone-2 can be reduced by lithium in anhydrous ammonia to the saturated tra/i5-2-decalone (Chapter 3, Section III). [Pg.82]

In 1821 Michael Faraday sent Ampere details of his memoir on rotary effects, provoking Ampere to consider why linear conductors tended to follow circular paths. Ampere built a device where a conductor rotated around a permanent magnet, and in 1822 used electric currents to make a bar magnet spin. Ampere spent the years from 1821 to 1825 investigating the relationship between the phenomena and devising a mathematical model, publishing his results in 1827. Ampere described the laws of action of electric currents and presented a mathematical formula for the force between two currents. However, not everyone accepted the electrodynamic molecule theory for the electrodynamic molecule. Faraday felt there was no evidence for Ampere s assumptions and even in France the electrodynamic molecule was viewed with skepticism. It was accepted, however, by Wilhelm Weber and became the basis of his theory of electromagnetism. [Pg.71]


See other pages where Michael results is mentioned: [Pg.2]    [Pg.46]    [Pg.169]    [Pg.276]    [Pg.411]    [Pg.467]    [Pg.404]    [Pg.50]    [Pg.815]    [Pg.81]    [Pg.2]    [Pg.33]    [Pg.93]    [Pg.88]    [Pg.378]    [Pg.387]    [Pg.147]    [Pg.187]    [Pg.224]    [Pg.391]   
See also in sourсe #XX -- [ Pg.494 ]




SEARCH



Sulfides Resulting From Michael Additions

© 2024 chempedia.info