Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oligomers crosslinking

Epoxy oligomer Crosslinked polystyrene Organosilicone polymer... [Pg.107]

Figure 7.7 SAXS profiles for two hydroxyl-terminated oligomers crosslinked by alkoxysilane sol-gel chemistry. First, 1 mole of macrodiol, SS (hydrogenated polybutadiene, HPBD or polycaprolactone, PCL, Mn= 2 kg mol-1), was reacted at 80°C with 2 mole of dicyclohexylmethane diisocyanate, H12 MDI. After complete reaction, the prepolymer was dissolved in tetrahydro-furan and the y-aminosilane, yAPS was added dropwise at room temperature. After 1 h of reaction, the solvent was removed under pressure. The final network was obtained in the absence of a solvent by hydrolysis and condensation of the ethoxysilane groups by the addition of 0.1 mol% TFA, trifluor-oacetic acid. After stirring at room temperature, the mixture was cast into a mold and cured for 24 h at 100°C under pressure, and then postcured at 150°C for 12 h. (Cuney et al., 1997 - Copyright 2001, Reprinted by permission of John Wiley Sons, Inc.)... Figure 7.7 SAXS profiles for two hydroxyl-terminated oligomers crosslinked by alkoxysilane sol-gel chemistry. First, 1 mole of macrodiol, SS (hydrogenated polybutadiene, HPBD or polycaprolactone, PCL, Mn= 2 kg mol-1), was reacted at 80°C with 2 mole of dicyclohexylmethane diisocyanate, H12 MDI. After complete reaction, the prepolymer was dissolved in tetrahydro-furan and the y-aminosilane, yAPS was added dropwise at room temperature. After 1 h of reaction, the solvent was removed under pressure. The final network was obtained in the absence of a solvent by hydrolysis and condensation of the ethoxysilane groups by the addition of 0.1 mol% TFA, trifluor-oacetic acid. After stirring at room temperature, the mixture was cast into a mold and cured for 24 h at 100°C under pressure, and then postcured at 150°C for 12 h. (Cuney et al., 1997 - Copyright 2001, Reprinted by permission of John Wiley Sons, Inc.)...
Neckers and coworkers reported a similar polymerization using (chloromethyl)dichloro-methylsilane as a starting material (equation 15)162. Oligomers were obtained in addition to cyclic trimers and tetramers. In the presence of a platinum catalyst and tetravinylsilane, the oligomer crosslinked when irradiated to form a hard, porous material that could be pyrolyzed to a silicon carbide char containing excess carbon. A later report described other platinum photo- and thermal catalysts that could be used in this crosslinking reaction163. [Pg.786]

Completely different results were obtained with a NiSMM sample treated with a solution containing a silica-alumina oligomer. Crosslinking was carried out at a pH of 4.8, using a solution prepared by refluxing a mixture of chlorohydrol and a sodium silicate solution for 24 h. [Pg.289]

If the thermal stability of the ether bonds is very low, then their decomposition occurs at temperatures, which are insufficiently high for the subsequent thermal degradation of the polymer. After the decomposition of all the weak bonds, the degradation of the newly formed structure, followed by the release of comparatively high molecular mass oligomers, crosslinking and the thermal decomposition of aromatic nuclei. Such a scheme for the thermal degradation of PPO depends on data on the chemical structure of the initial PPO, and the volatile and final solid products of this process at different temperatures. These data enable determination of the direction of thermal... [Pg.81]

Furfural reacts with ketones to form strong, crosslinked resins of technical interest in the former Soviet Union the U.S. Air Force has also shown some interest (42,43). The so-called furfurylidene acetone monomer, a mixture of 2-furfurylidene methyl ketone [623-15-4] (1 )> bis-(2-furfurylidene) ketone [886-77-1] (14), mesityl oxide, and other oligomers, is obtained by condensation of furfural and acetone under basic conditions (44,45). Treatment of the "monomer" with an acidic catalyst leads initially to polymer of low molecular weight and ultimately to cross-linked, black, insoluble, heat-resistant resin (46). [Pg.79]

A typical maleimide resin is synthesized by the Michael addition of MDA and BMI (Fig. 4). If the stoichiometrically equal amounts of MDA and BMI are added into the reaction solvent under controlled temperature, linear, high molecular weight polyaminoimide (PAI) results. To obtain crosslinkable oligomer (pre-polymer) with maleimide end groups, a calculated 1.1-1.8 times an excess... [Pg.814]

As already mentioned, aromatie polymers are thermally stable but aliphatic portions of them are not as thermally stable. Typical maleimide resins have aliphatic units. This is inevitable because the Michael addition was used to prepare the maleimide-based oligomers. On the other hand, if an adhesive consists of a linear thermoplastic polymer, it is not usable at temperatures above its softening temperature. Introdueing chemical crosslinking is one way to prevent thermal weakening of a material. [Pg.819]

An EB-curable struetural adhesive formulation usually eonsists of one or more crosslinkable oligomeric resins or prepolymers, along with such additives as reactive diluents, plasticizers, and wetting agents. The oligomer is an important component in terms of the development of mechanical properties. The adhesive and cohesive properties depend on the crosslink density, chemical group substitution, and molecular organization within the polymer matrix. Adhesion is achieved... [Pg.1012]

Void-free phenolic networks can be prepared by crosslinking novolacs with epoxies instead of HMTA. A variety of difunctional and multifunctional epoxy reagents can be used to generate networks with excellent dielectric properties.2 One example of epoxy reagents used in diis manner is the epoxidized novolac (Fig. 7.34) derived from the reaction of novolac oligomers with an excess of epichlorohydrin. [Pg.411]

A difunctional bisphenol-A-based benzoxazine has been synthesized and characterized by GPC and 1II NMR (Fig. 7.39). A small of amount of dimers and oligomers also formed. Thermal crosslinking of bisphenol-A benzoxazine containing dimers and oligomers resulted in networks with relatively high Tgs. Dynamic mechanical analysis of the network showed a peak of tan 8 at approximately 185°C. [Pg.416]

Polyurethanes are thermoset polymers formed from di-isocyanates and poly functional compounds containing numerous hydroxy-groups. Typically the starting materials are themselves polymeric, but comprise relatively few monomer units in the molecule. Low relative molar mass species of this kind are known generally as oligomers. Typical oligomers for the preparation of polyurethanes are polyesters and poly ethers. These are usually prepared to include a small proportion of monomeric trifunctional hydroxy compounds, such as trimethylolpropane, in the backbone, so that they contain pendant hydroxyls which act as the sites of crosslinking. A number of different diisocyanates are used commercially typical examples are shown in Table 1.2. [Pg.16]

Tubular reactors are used for some polycondensations. Para-blocked phenols can be reacted with formalin to form linear oligomers. When the same reactor is used with ordinary phenol, plugging will occur if the tube diameter is above a critical size, even though the reaction stoichiometry is outside the region that causes gelation in a batch reactor. Polymer chains at the wall continue to receive formaldehyde by diffusion from the center of the tube and can crosslink. Local stoichiometry is not preserved when the reactants have different diffusion coefficients. See Section 2.8. [Pg.504]

Equations 22 and 23 can be solved numerically using the method described in Ref. 5. For oligomers, the probability generating functions are calculated by the appropriate sums. For random copolymers analytical expressions for and t can be written for a polymer or crosslinker using the appropriate Schulz-Zimm parameters (5) ... [Pg.196]

PRINT "CROSSLINKER CAN BE EITHER A MIXTURE OF OLIGOMERS WITH UP TO"... [Pg.208]

Initiation of stannous octoate-catalyzed copolymerization of e-caprolactone with glycerol was used to prepare a series of trifunctional hydroxy-end blocked oligomers, which were then treated with hexane-1,6-diisocyanate to form elastomeric polyesterurethanes with different crosslink densities (49). Initiation of e-caprolactone polymerization with a hydroxypropyl-terminated polydimethylsiloxane in the presence of dibutyl tin dilaurate has been used to prepare a polyester-siloxane block copolymer (Fig. 4) (50). [Pg.80]


See other pages where Oligomers crosslinking is mentioned: [Pg.210]    [Pg.910]    [Pg.77]    [Pg.210]    [Pg.910]    [Pg.77]    [Pg.39]    [Pg.492]    [Pg.815]    [Pg.820]    [Pg.820]    [Pg.821]    [Pg.1034]    [Pg.220]    [Pg.100]    [Pg.266]    [Pg.580]    [Pg.600]    [Pg.7]    [Pg.9]    [Pg.16]    [Pg.31]    [Pg.45]    [Pg.50]    [Pg.59]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.73]    [Pg.205]    [Pg.351]    [Pg.207]    [Pg.217]    [Pg.223]    [Pg.245]    [Pg.587]    [Pg.600]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Oligomers crosslinking reactions

© 2024 chempedia.info