Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael reaction, carbon nucleophile

The addition of a nucleophilic carbon species to an zr,/3-unsaturated ketone, aldehyde, ester or nitrile is called Michael reaction. Other nucleophiles such as amines, alkoxides or thiolates react similarly. In this case sodium hydride generates the anion of tert-butanethiol which undergoes an 1,4-addition at the conjugated ester. Regeneration of the double bond by elimination of bromine leads to the thermodynamically more stable E-ester 20. [Pg.160]

In view of their capacity for Michael reactions with nucleophiles to give intermediate vinylidene-iodonium ylides, alkynyliodonium ions might be expected to behave as 1,3-dipolarophiles. Cycloadducts in which the nucleophilic end of the dipole is bound to the / -carbon atom of the starting alkynyliodonium ion (i.e. the / -adduct) might also be anticipated (equation 136). [Pg.1222]

All conjugate additions add the elements of H and Nu across the a and P carbons. In the Michael reaction, the nucleophile is an enolate. Enolates of active methylene compounds are particularly common. The a,p-unsaturated carbonyl component is often called a Michael acceptor. [Pg.934]

The Michael addition of nucleophiles to the carbon—carbon double bond of maleimide has been exploited ia the synthesis of a variety of linear polymers through reaction of bismaleimide with bisthiols (39). This method has been used to synthesize ethynyl-terminated imidothioether from the reaction of 4,4 -dimercaptodiphenyl ether [17527-79-6] and A/-(3-ethynylphenyl)maleimide (40). The chemical stmcture of this Michael addition imide thermoset is as follows ... [Pg.27]

The use of carbon nucleophiles in Michael-type addition reactions with pteridine and its derivatives leads to a quite complicated and divergent pattern. These reactions are strongly dependent on the nature of the carbon nucleophile and can be divided into various categories. [Pg.288]

Michael addition reactions, 3, 279 with carbon nucleophiles, 3, 288 reactions... [Pg.755]

Michael reactions take place by addition of a nucleophilic enolate ion donor to the /3 carbon of an a,(3-unsaturated carbonyl acceptor, according to the mechanism shown in Figure 23.7. [Pg.894]

In addition to enolate ions, other kinds of carbon nucleophiles also add to a jjS-iinsaturated acceptors in Michael-like reactions. Among the most important such nucleophiles, particularly in biological chemistry, are enamines, which are... [Pg.896]

The conjugate addition of a carbon nucleophile to an a./3-unsiituratcd acceptor is known as the Michael reaction. The best Michael reactions take place between unusually acidic donors (/3-keto esters or /3-diketones) and unhindered n,/3-unsaturated acceptors. Knamines, prepared by reaction of a ketone with a disu Instituted amine, are also good Michael donors. [Pg.905]

The previous sections dealt with reactions in which the new carbon-carbon bond is formed by addition of the nucleophile to a carbonyl group. Another important method for alkylation of carbon nucleophiles involves addition to an electrophilic multiple bond. The electrophilic reaction partner is typically an a,(3-unsaturated ketone, aldehyde, or ester, but other electron-withdrawing substituents such as nitro, cyano, or sulfonyl also activate carbon-carbon double and triple bonds to nucleophilic attack. The reaction is called conjugate addition or the Michael reaction. [Pg.183]

Highly stabilized phosphorus ylides are prepared from acetylenic esters, a carbon-based nucleophile, and triphenylphosphine in aqueous media.40 In acetone-water (2 1) solvent, the reaction proceeds via the conjugate addition of triphenylphosphine to dialkyl acetylenedicarboxy-lates the resulting vinyl triphenylphosphonium salts undergo Michael addition reaction with a carbon-nucleophile to give the corresponding highly stabilized phosphorus ylides. [Pg.320]

Where the nucleophile attacking the substituted alkene is a carbanion (cf. p. 284) the process is referred to as a Michael reaction its particular synthetic utility resides in its being a general method of carbon-carbon bond formation e.g. with (91) ... [Pg.200]

Hassner and coworkers have developed a one-pot tandem consecutive 1,4-addition intramolecular cycloaddition strategy for the construction of five- and six-membered heterocycles and carbocycles. Because nitroalkenes are good Michael acceptors for carbon, sulfur, oxygen, and nitrogen nucleophiles (see Section 4.1 on the Michael reaction), subsequent intramolecular silyl nitronate cycloaddition (ISOC) or intramolecular nitrile oxide cycloaddition (INOC) provides one-pot synthesis of fused isoxazolines (Scheme 8.26). The ISOC route is generally better than INOC route regarding stereoselectivity and generality. [Pg.270]

As depicted in the following scheme, in the presence of sodium iodate and pyridine, several 5,6-dihydroxylated benzofuran derivatives were synthesized via an oxidation-Michael addition of P-dicarbonyl compounds to catechols in a one-pot procedure <06TL2615 06JHC1673>. A novel additive Pummerer reaction of 2-benzo[fc]furan sulfilimines with carbon nucleophiles derived from P-dicarbonyl compounds was also employed to the synthesis of 2,3-disubstituted benzo[b]furans <06TL595>. [Pg.197]

Reactions of a,(3-unsaturated acylzirconocene chlorides with stable carbon nucleophiles (sodium salts of dimethyl malonate and malononitrile) at 0°C in THF afford the Michael addition products in good yields (Scheme 5.38). Direct treatment of the reaction mixture with allyl bromide in the presence of a catalytic amount of Cul -2LiCl (10 mol%) in THF at 0 °C gives the allylic ketone in a one-pot reaction. This sequential transformation implies the electronic nature of a,P-unsaturated acylzirconocene chloride to be of type E as shown in Scheme 5.37. [Pg.174]

As in the case of addition reactions of carbon nucleophiles to activated dienes (Section HA), organocopper compounds are the reagents of choice for regio- and stereoselective Michael additions to acceptor-substituted enynes. Substrates bearing an acceptor-substituted triple bond besides one or more conjugated double bonds react with organocuprates under 1,4-addition exclusively (equation 51)138-140 1,6-addition reactions which would provide allenes after electrophilic capture were not observed (cf. Section IV). [Pg.670]

Also alkynylcarbene complexes can react as Michael acceptors with nucleophiles, forming 1,3-dien-l-ylcarbene complexes (Figure 2.17). Both carbon nucleophiles, such as, e.g., enamines [246-249], and non-carbon nucleophiles, such as imidates [250], amines [64,131,251], aliphatic alcohols [48,79,252], phenols [252], and thiols [252] can add to the C-C triple bond of alkynylcarbene complexes. Further reactions of the C-C triple bond of alkynylcarbene complexes include 1,3-dipolar [253,254], Diels-Alder [64,234,238,255-258] and [2 -i- 2] cycloadditions [259 -261], intramolecular Pauson-Khand reactions [43,262], and C-metallation of ethynylcarbene complexes [263]. [Pg.36]

These are reacted together in basic solution. It can be deduced that the 1,3-diketone is more acidic than the monoketone substrate, so will be ionized by removal of a proton from the carbon between the two carbonyls to give the enolate anion as a nucleophile. This attacks the a,P-unsaturated ketone in a Michael reaction. It is understandable that this large nucleophile prefers to attack the unhindered -position rather than the more congested ketone carbonyl. [Pg.399]

In its original form, the Michael addition consisted on the addition of diethyl malonate across the double bond of ethyl cinnamate in the presence of sodium ethoxide to afford a substituted pentanedioic acid ester. Currently, all reactions that involve a 1,4-addition of stabilized carbon nucleophiles to activated 7i-systems are known as Michael additions. Among the various reactants, enolates derived from p-dicarbonyl compounds are substrates of choice due to their easy deprotonation under mild conditions. Recently, Michael addition-based MCRs emerged as highly potential methodologies for the synthesis of polysubstituted heterocycles in the five- to seven-membered series. [Pg.256]

Michael Addition (Condensation, Reaction) The addition of a carbon nucleophile to an activated unsaturated system. [Pg.348]

In contrast, ethyl 3-oxo-4-(triphenylphosphoranylidene)butyrate behaves as a C,0-bis(nucleophile) when reacted with unsaturated 5(4//)-oxazolones 584 with a leaving group at the exocyclic p-carbon. In this case, initial Michael reaction generates 585 that eliminates HX to produce a resonance stabihzed ylide 586. Cyclization of 586 with ring opening leads to the interesting ylide intermediate 587 used for the synthesis of 2//-pyran-2-ones (Scheme 7.185). [Pg.252]

For carbon nucleophiles sequential addition of 2-potassio-2-nitropropane and oxygen to 4-arylidene-2-phenyl-5(47/)-oxazolones 623 has been reported (Scheme 7.200). The process involves a Michael reaction of the 2-nitropropane anion followed by reaction with molecular oxygen and elimination of nitrous acid to yield 2-aryl butenoic acid imides 626. [Pg.259]

Sulfur ylides are among the most interesting carbon nucleophiles and their synthetic importance has been recently reviewed.One especially interesting use of these ylides is their application to the synthesis of cyclopropane derivatives using unsaturated oxazolones. For example, stabilized sulfur yhdes react with unsaturated oxazolones 629 via a Michael reaction to give oxazolone spirocyclopropanes 630 as shown in Scheme 7.202 and Table 7.46 (Fig. 7.57), whereas the less stabilized sulfur ylides give ring-opened products 631 as the major compounds (Scheme 7.202). ... [Pg.260]

Reaction of the ambidentate complex 1 with carbon nucleophiles results in exclusive 1,4-addition (Michael addition) to the enone-like acyl ligand no products of 1,2-addition of the nucleophile are observed (see also Houben-Weyl, Volume 13/9 a, p 416)38 39. [Pg.929]

The most common preparations of amines on insoluble supports include nucleophilic aliphatic and aromatic substitutions, Michael-type additions, and the reduction of imines, amides, nitro groups, and azides (Figure 10.1). Further methods include the addition of carbon nucleophiles to imines (e.g. the Mannich reaction) and oxidative degradation of carboxylic acids or amides. Linkers for primary, secondary, and tertiary amines are discussed in Sections 3.6, 3.7, and 3.8. [Pg.263]


See other pages where Michael reaction, carbon nucleophile is mentioned: [Pg.1922]    [Pg.755]    [Pg.398]    [Pg.558]    [Pg.369]    [Pg.42]    [Pg.184]    [Pg.35]    [Pg.328]    [Pg.205]    [Pg.159]    [Pg.247]    [Pg.251]    [Pg.863]    [Pg.166]    [Pg.3]   


SEARCH



Carbon nucleophile

Carbon nucleophiles

Michael nucleophiles

© 2024 chempedia.info