Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael extended

The Michael reaction plays a part in some more extended synthetic sequences of great importance. Analyse TM 116 as an a,p-unsaturated carbonyl compound and continue your analysis by the Michael reaction. [Pg.37]

The versatility of this reaction is extended to a variety of aldehydes. The bisphenol derived from 2,6-di-/ f2 -butylphenol and furfural, (25) where R = furfuryl (13), is also used as an antioxidant. The utility of the 3,5-di-/ f2 -butyl-4-hydroxyben2yl moiety is evident in stabili2ets of all types (14), and its effectiveness has spurred investigations of derivatives of hindered alkylphenols to achieve better stahi1i2ing quaUties. Another example is the Michael addition of 2,6-di-/ f2 -butyl phenol to methyl acrylate. This reaction is carried out under basic conditions and yields methyl... [Pg.61]

The Michael addition reaction of amines and thiols with bismaleimides or functionalized monomaleimides is a versatile tool ia the synthesis of chain-extended maleimide-terroinated prepolymers. These prepolymers generally are soluble ia organic solvents from which they can be processed to prepreg and molded to high quaUty, void-free laminates. [Pg.27]

The constant pattern concept has also been extended to circumstances with nonplug flows, with various degrees of rigor, including flow profiles in tubes [Sartory, Jnd. Eng. Chem. Fundam., 17, 97 (1978) Tereck et al., Jnd. Eng. Chem. Res., 26, 1222 (1987)], wall effects [Vortmeyer and Michael, Chem. Eng. ScL, 40, 2135 (1985)], channeling [LeVan and Vermeulen in Myers and Belfort (eds.). Fundamentals of Adsorption, Engineering Foundation, New York (1984), pp. 305-314, AJChE Symp. Ser No. 233, 80, 34 (1984)], networks [Aviles and LeVan, Chem. Eng. Sci., 46, 1935 (1991)], and general structures of constant cross section [RudisiU and LeVan, Jnd. Eng. Chem. Res., 29, 1054 (1991)]. [Pg.1528]

The Y appendage of 2-cyclohexenone 191 cannot be directly disconnected by an alkylation transform. (y-Extended enolates derived from 2-cyclohexenones undergo alkylation a- rather than y- to the carbonyl group). However, 191 can be converted to 192 by application of the retro-Michael transform. The synthesis of 192 from methoxybenzene by way of the Birch reduction product 193 is straightforward. Another synthesis of 191 (free acid) is outlined in... [Pg.71]

Van Leusen and co-workers also demonstrated the utility of dilithio-tosylmethyl isocyanide (dilithio-TosMIC) to extend the scope of the application. Dilithio-TosMIC is readily formed from TosMIC and two equivalents of n-butyllithium (BuLi) in THF at -70"C. Dilithio-TosMIC converts ethyl benzoate to oxazole 14 in 70% yield whereas TosMIC monoanion does not react. In addition, unsaturated, conjugated esters (15) react with dilithio-TosMIC exclusively through the ester carbonyl to provide oxazoles (16). On the other hand, use of the softer TosMIC-monoanion provides pyrroles through reaction of the carbon-carbon double bond in the Michael acceptor. [Pg.256]

Copper-mediated Addition Reactions to Extended Michael Acceptors... [Pg.146]

Although the base-catalyzed addition of nitroalkanes to electron-deficient olefins has been extensively used in organic synthesis fsee Michael addition Chapter 4, it is only recently that the reaction has been extended to the cyclopropanadon reaction. In 1978, it was reported that the anion of nitromethane reacts with certain highly electron-deficient olefins to produce cycloptopanesingoodyieldrEq. 7.36. More recently, this reaction has been extended to more general cyclopropanadons, as shown in Eqs. 7.37 and 7.38, in which potassittm salts of nitroalkanes are employed in DMSO as alkylidene transfer reagents." ... [Pg.191]

The enolate of the 1,4-adduct, obtained after the stereoselective Michael addition step, as discussed in the previous sections, may be quenched in situ with various electrophiles. The fact that additional stereogenic centers may be formed via such tandem Michael addition/quench-ing procedures, giving products with high diastereoselectivity in many cases, extends the scope of these methods substantially. Furthermore these procedures occasionally offer the possibility of reversing the syn/anti diastereoselection. In the next sections pertinent examples of diastereoselective inter- and intramolecular quenching reactions will be discussed. [Pg.992]

An alternative is to carry out a normal Michael addition and extend the chain bv cyanide displacement, though this does not strictly produce a reagent for either (42) or (43). [Pg.325]

In 1976, Stetter extended the synthetic utility of the Breslow intermediate (1) as an acyl anion equivalent by showing that aldehydes could be coupled with Michael acceptors to generate 1,4-dicarbonyl compounds [55]. [Pg.276]

Rovis and co-workers further extended the scope of the reaction to the enantio-and diastereoselective cyclisation of a,P-disubstituted Michael acceptors 137. The high diastereoselectivity of the process relies on selective protonation of the resnltant enolate after conjugate addition. It was found that HMDS (formed dnring deprotonation of the triazolium salt pre-catalyst) was detrimental to the... [Pg.278]

We would like to acknowledge the commitment and dedication of the 161 contributing authors and 145 reviewers of the chapters contained in this text (a list of contributors and a list of reviewers are included in the frontmatter of this book). We also extend our thanks to the McGraw-Hill Medical Publishing Division, especially Michael Brown, Maya Barahona, and Robert Pancotti, for their dedication to this project. Finally, we thank our... [Pg.1716]

Domino Michael/aldol processes, which are initiated by the addition of a halide to an enone or enal, have found wide attention. They are valuable building blocks, as they can be easily converted into a variety of extended aldols via subsequent SN2 reactions with nucleophiles or a halide/metal exchange. As an example, a-haloalkyl- 3-hy-droxy ketones such as 2-76 have been obtained in very good yields and selectivities by reaction of enones 2-71 with nBu4NX in the presence of an aldehyde 2-74 and TiCl4as described by the group of Shinokubo and Oshima (Scheme 2.16) [24]. [Pg.58]

Alkenones were used by Rao and coworkers [40] to prepare cyclohexane derivatives which, for example, can be transformed into substituted arenes in a single step. Another interesting intermolecular Michael/intramolecular aldol reaction sequence for the construction of the highly substituted 2-hydroxybicy-clo[3.2.1]octan-8-one framework has been described by Rodriguez group [41]. This process can be extended to a three- and even a fourfold domino reaction [41a, 42, 43],... [Pg.63]

Moreover, by using only TEMPO without addition of 2-714 the Michael adduct 2-713 is transformed into the isopropenylcyclopentane 2-715b as the major product. The process can also be extended by another radical reaction step [364]. [Pg.156]

Ono and Kamimura have found a very simple method for the stereo-control of the Michael addition of thiols, selenols, or alcohols. The Michael addition of thiolate anions to nitroalkenes followed by protonation at -78 °C gives anti-(J-nitro sulfides (Eq. 4.8).11 This procedure can be extended to the preparation of a/jti-(3-nitro selenides (Eq. 4.9)12 and a/jti-(3-nitro ethers (Eq. 4.10).13 The addition products of benzyl alcohol are converted into P-amino alcohols with the retention of the configuration, which is a useful method for anri-P-amino alcohols. This is an alternative method of stereoselective nitro-aldol reactions (Section 3.3). The anti selectivity of these reactions is explained on the basis of stereoselective protonation to nitronate anion intermediates. The high stereoselectivity requires heteroatom substituents on the P-position of the nitro group. The computational calculation exhibits that the heteroatom covers one site of the plane of the nitronate anion.14... [Pg.73]

Ono and coworkers have extended the radical elimination of v/c-dinitro compounds to P-nitro sulfones151 and P-nitro sulfides.138,152 As P-nitro sulfides are readily prepared by the Michael addition of thiols to nitroalkenes, radical elimination of P-nitrosulfides provides a useful method for olefin synthesis. For example, cyclohexanone is converted into allyl alcohol by the reaction shown in Eq. 7.110. Treatment of cyclohexanone with a mixture of nitromethane, PhSH, 35%-HCHO, TMG (0.1 equiv) in acetonitrile gives ahydroxymethylated-P-nitro sulfide in 68% yield, which is converted into the corresponding allyl alcohol in 86% yield by the reaction with Bu3SnH.138 Nitro-aldol and the Michael addition reactions take place sequentially to give the required P-nitro sulfides in one pot. [Pg.216]

Von Sonntag and coworkers14 repeated Michael and Hart s study of the reaction of OH radical with 1,3- and 1,4-cyclohexadienes and extended it. They found that in the case of 1,4-cyclohexadiene, 50% of the OH radicals abstract an hydrogen atom, while only about 25% of the OH radicals abstract an hydrogen atom from 1,3-cyclohexadiene. The remaining OH radicals probably add to the double bond. The addition to the double bond was confirmed by final products analysis in the case of the 1,4-isomer. When N20-saturated aqueous solution of 1,4-cyclohexadiene (10-2 M) together with lower (10-4 M) concentration of the thiol (1,4-dithiothreitol) was y-radiolysed, it was found that 4-hydroxycyclohexene was produced with a yield of 0.29 prnol J 1, i.e. a yield of 50% of the OH radicals (equation 9). [Pg.329]

The success of bis(oxazoline)-copper(II) catalyzed Diels-Alder reactions involving acryloylimides as dienophiles has been extended to the Michael reaction, Eqs. 204 and 205. The observed enantiofacial discrimination in the Diels-Alder reactions was expected to translate well to Michael reactions involving enolsilanes as nucleophiles. Indeed, fumarate-derived imides afford Michael adducts of enolsilanes in high enantioselectivity (240). Diastereoselectivity in these reactions may be regulated by judicious choice of thioester and enolsilane geometry to provide either diastereomer in high selectivity (>99 1 syn or 95 5 anti). [Pg.120]

Despite its unsaturated nature, benzene with its sweet aroma, isolated by Michael Faraday in 1825 [1], demonstrates low chemical reactivity. This feature gave rise to the entire class of unsaturated organic substances called aromatic compounds. Thus, the aromaticity and low reactivity were connected from the very beginning. The aromaticity and reactivity in organic chemistry is thoroughly reviewed in the book by Matito et al. [2]. The concepts of aromaticity and antiaromaticity have been recendy extended into main group and transition metal clusters [3-10], The current chapter will discuss relationship among aromaticity, stability, and reactivity in clusters. [Pg.439]

Similar models explain the 1,8-, 1,10- and 1,12-addition reactions to the extended Michael acceptors 91, 93 and 95, respectively (Schemes 2.32 and 2.33). Again, these transformations start with the formation of a cuprate Jt-complex at the double bond neighbouring the acceptor group [61a]. Subsequently, an equilibrating mixture of a-copper(III) intermediates is presumably formed and the regioselectivity of the reaction may then be governed by the different relative rates of the reductive elimination step of these intermediates. Consequently, the exclusive formation of allenic prod-... [Pg.69]

Nucleophilic additions of amines to acceptor-substituted dienes were examined as early as 1950. Frankel and coworkers98 found that the reaction of 2,4-pentadienenitrile with various secondary amines proceeded regioselectively to furnish the 1,6-addition products (equation 29). In some cases, these could converted into the 2,4-diamino-substituted pen-tanenitriles by isomerization and 1,4-addition of a second molecule of amine. Analogous results were reported by other groups17,99 100 and extended to hydrazine as nucleophile101 and to vinylcyclobutenones48 and dienoates102-104 as Michael acceptors. [Pg.660]


See other pages where Michael extended is mentioned: [Pg.464]    [Pg.537]    [Pg.73]    [Pg.216]    [Pg.410]    [Pg.695]    [Pg.347]    [Pg.654]    [Pg.278]    [Pg.410]    [Pg.695]    [Pg.321]    [Pg.223]    [Pg.108]    [Pg.561]    [Pg.5]    [Pg.154]    [Pg.410]    [Pg.68]    [Pg.31]    [Pg.957]    [Pg.251]    [Pg.45]    [Pg.42]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



By Michael Baer Non-Adiabatic Effects in Chemical Reactions Extended Born-Oppenheimer Equations and Its Applications

Double Michael addition with extended acceptors

Michael acceptors extended

© 2024 chempedia.info