Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael additions imines

After reduction of the nitro function of the porphyrin, the porphyrinamine intermediate can be reacted with z./l-unsaturated carbonyl compounds to yield porphyrins with a fused pyridine ring, which is formed by Michael addition, imine formation and dehydrogenation. [Pg.609]

Besides the domino Michael/SN processes, domino Michael/Knoevenagel reactions have also been used. Thus, Obrecht, Filippone and Santeusanio employed this type of process for the assembly of highly substituted thiophenes [102] and pyrroles [103]. Marinelli and colleagues have reported on the synthesis of various 2,4-disubstituted quinolines [104] and [l,8]naphthyridines [105] by means of a domino Michael addition/imine cyclization. Related di- and tetrahydroquinolines were prepared by a domino Michael addition/aldol condensation described by the Hamada group [106]. A recent example of a domino Michael/aldol condensation process has been reported by Brase and coworkers [107], by which substituted tetrahydroxan-thenes 2-186 were prepared from salicylic aldehydes 2-184 and cycloenones 2-185 (Scheme 2.43). [Pg.75]

Application of solid-state chemistry for quantitative multistep cascades in a ball mill is also demonstrated by reaction of enamine ketone 291 with 1,2-dibenzoylethene 292 (Scheme 3.78). Pyrrole derivative 293 was obtained by Kaupp et al. in quantitative yield through four reaction steps (vinylogous Michael addition, imine/enamine rearrangement, cyclization, and elimination), without the use of add catalysts [18]. [Pg.207]

The 6-methoxymethylene penicillanic acid [93040-42-7] (31, R = CH OCH (2)-isomer, R" = R " = 3) designed to mimic the amino acrylate species found usiag clavulanic acid and sulbactam. Upon the reaction of this compound with the enzyme, the potential exists for further Michael addition to inactivate the enzyme. The compound is indeed a -lactamase inhibitor but no synergy data have been reported. The related imine stmcture... [Pg.55]

Mainly sulfoxide groups are introduced as chiral auxiliaries for the modification of a,/J-unsat-urated enones (see Section D.1.5.3.5.). Chiral imine derivatives have also been used (see Section D.1.5.3.1.). Various chiral alcohols, and in particular 8-phenylmenthol, have been successfully used as auxiliaries, mainly in two-fold Michael additions to a,/ -unsaturatcd esters. [Pg.966]

The Michael additions of chiral cycloalkanone imines or enamines, derived from (FV l-l-phcnyl-ethanamine or (5)-2-(methoxymethyl)pyrrolidine, are highly diastereofacially selective reactions providing excellent routes to 2-substituted cycloalkanones. This is illustrated by the addition of the enamine of (S)-2-(methoxymethyl)pyrrolidine and cyclohexanone to 2-(aryl-methylene)-l,3-propanedioates to give, after hydrolysis, the (2 5,a.S )-oxodicstcrs in 35-76% yield with d.r. (2 S,aS)/(2 S,a/ ) 94 6- > 97 3 and 80-95% ee214. [Pg.982]

An analogous cyclization to eventually form five-membered rings has also been observed for l-metalla-l,3,5-hexatrienes with an additional heteroatom within the chain, such as in the complexes 157. These are obtained by Michael additions of imines to alkynylcarbene complexes in good to excellent yields (reaction type F in Scheme 4), and their configurations were determined to be Z (>91%) in all cases. Upon warming in THF solution, complexes 157 underwent cyclization with reductive elimination to furnish 2Ff-pyrroles 158 in up to 97% yield (Scheme 34). With two cyclopropyl substituents at the terminus in... [Pg.49]

The Nef reaction can also be carried out with reducing agents. Aqueous titanium chloride reduces nitro compounds to imines, which are readily hydrolyzed to carbonyl compounds (Eq. 6.17).28 The Michael addition of nitroalkanes to enones followed by reaction with TiCl3 provides an excellent route to 1,4-diketones and hence to cyclopentenones. For example, cw-jasmone is readily obtained,28 as shown in Eq. 6.18. [Pg.164]

A one pot samarium-catalyzed three-component reaction of aldehydes, amines, and nitroal-kanes leads to pyrroles. The reaction proceeds via imines, generated from the amine and carbonyl compound, followed by the Michael addition of the nitro compound (Eq. 10.10).12a In... [Pg.328]

Derivatization of the optically active aldehydes to imines has been used for determination of their enantiomeric excess. Chi et al.3 have examined a series of chiral primary amines as a derivatizing agent in determination of the enantiomeric purity of the a-substituted 8-keto-aldehydes obtained from catalysed Michael additions. The imine proton signals were well resolved even if the reaction was not completed. The best results were obtained when chiral amines with —OMe or —COOMe groups were used [2], The differences in chemical shifts of diastereo-meric imine proton were ca. 0.02-0.08 ppm depending on amine. This method has been also used for identification of isomers of self-aldol condensation of hydrocinnamaldehyde. [Pg.129]

Some chiral quaternary ammonium salts are also effective in Michael addition reactions. The Merck catalysts 7 (R=4-CF3, X=Br) and 9 (R=4-CF3, X=Br, 10,11-dihydro) were used tor the Michael additions of 59,61, and 64 to vinyl ketones to give the adducts 60,62, and 65 (isolated as 66), respectively,148,491 with excellent enantioselectivity, as shown in Scheme 19. The Michael addition of the O Donnell imine 23 to the a,(3-unsaturated carbonyl compounds also efficiently proceeded by use of the N-anthracenyl-methyl catalyst 12 (R=allyl, X=Br), giving the Michael adducts 67 (Scheme 20).1251... [Pg.134]

A fundamentally different approach to the synthesis of 3-pyrrolines is evidenced in the annulation in Eq. 13.50 [58]. Ethyl 2,3-butadienoate 150 reacts with N-sulfony-limine 151 in the presence of triphenylphosphine under very mild conditions to give JV-protected 3-pyrroline 152 in 90% yield. The mechanism that has been postulated is related to that of the Baylis-Hillman reaction. Michael addition of triphenylphosphine to the allenyl ester generates a zwitterion that combines with the imine to give 153 in a non-concerted process. This is followed by ring closure, proton exchange and expulsion of triphenylphosphine to give 152. This annulation is successful only for aromatic or cinnamyl imines [59]. [Pg.838]

Michael addition of methylene imines with alkenes under solid Iiquid two-phase conditions provides a route to substituted a-amino acids [26, 27] (Scheme 6.22). When ethyl glycine is (V-protected with (S)-menthone, C-alkylation under soliddiquid... [Pg.277]

Among the catalytic asymmetric alkyne additions to the sp carbon center, such as carbonyl, imines, and iminiums, truly metal-catalyzed alkyne addition to alkenes is rare. By using a PINAP derivative (Figure 5.4), Cu-catalyzed Michael addition... [Pg.135]

To date, hydrogen bond catalysis has been successfully utilized to facilitate enantioselective Michael additions, Baylis-Hillman reactions, Diels-Alder cycloadditions, and additions of 7i-nucleophiles to imines. [Pg.332]

Another structurally modified guanidine was reported by Ishikawa et al. as a chiral superbase for asymmetric silylation of secondary alcohols [122]. Soon after, Ishikawa discovered that the same catalyst promoted asymmetric Michael additions of glycine imines to acrylates [123]. The additions were promoted in good yield and great asymmetric induction under neat reaction conditions with guanidine catalyst 250 (Scheme 68). The authors deduced that the high conversion and selectivity were due to the relative configuration of the three chiral centers of the catalyst in... [Pg.189]

On the basis of encouraging work in the development of L-proline-DMSO and L-proline-ionic liquid systems for practical asymmetric aldol reactions, an aldolase antibody 38C2 was evaluated in the ionic liquid [BMIM]PF6 as a reusable aldolase-ionic liquid catalytic system for the aldol synthesis of oc-chloro- 3-hydroxy compounds (288). The biocatalytic process was followed by chemical catalysis using Et3N in the ionic liquid [BMIM]TfO at room temperature, which transformed the oc-chloro-(3-hydroxy compounds to the optically active (70% ee) oc, (3-epoxy carbonyl compounds. The aldolase antibody 38C2-ionic liquid system was also shown to be reusable for Michael additions and the reaction of fluoromethylated imines. [Pg.228]

The solid-state interaction of enamines (428, 333a) with trans-l,2-diben-zoylethene (87) provides quantitative yields of the pyrrole derivatives 445 or 446 [140]. These remarkable 5-cascades consist of initial vinylogous Michael addition, enol/keto tautomerism, imine/enamine tautomerism, cyclization, and elimination, all within the crystal without melting. A waste-free extraordinary atom economy is achieved that cannot nearly be obtained in solution. The milling times are unusually long here (3 h) but it s certainly worth the effort... [Pg.175]

The groups of Rueping [25] and Gong [26] have developed the aza-hetero-Diels-Alder reaction of aryl imines and cyclohexenone to give isoquinuclidines in good endojexo selectivities and high yields and ee s by 1 and la, respectively (Scheme 5.13). In the presence of acid, cyclohexenone enolizes to afford the dienol which subsequently undergoes a Mannich reaction with the protonated aldimine followed by intramolecular aza-Michael addition to produce the formal Diels-Alder adducts. [Pg.83]

Scheme 6.104 Key intermediates of the proposed catalytic cycle for the 100-catalyzed Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes Formation of imine (A) and F-enamine (B), double hydrogen-bonding activation of the nitroalkene and nucleophilic enamine attack (C), zwitterionic structure (D), product-forming proton transfer, and hydrolysis. Scheme 6.104 Key intermediates of the proposed catalytic cycle for the 100-catalyzed Michael addition of a,a-disubstituted aldehydes to aliphatic and aromatic nitroalkenes Formation of imine (A) and F-enamine (B), double hydrogen-bonding activation of the nitroalkene and nucleophilic enamine attack (C), zwitterionic structure (D), product-forming proton transfer, and hydrolysis.
Asymmetric Michael Additions of Enantiopure Camphor Imines.. . 774... [Pg.755]

The reaction mechanism proposed for the LiBr/NEta induced azomethine ylide cycloadditions to a,p-unsaturated carbonyl acceptors is illustrated in Scheme 11.10. The ( , )-ylides, reversibly generated from the imine esters, interact with acceptors under frontier orbital control, and the lithium atom of ylides coordinates with the carbonyl oxygen of the acceptors. Either through a direct cycloaddition (path a) or a sequence of Michael addition-intramolecular cyclization (path b), the cycloadducts are produced with endo- and regioselectivity. Path b is more likely, since in some cases Michael adducts are isolated. [Pg.765]

One problem in the anti-selective Michael additions of A-metalated azomethine ylides is ready epimerization after the stereoselective carbon-carbon bond formation. The use of the camphor imines of ot-amino esters should work effectively because camphor is a readily available bulky chiral ketone. With the camphor auxiliary, high asymmetric induction as well as complete inhibition of the undesired epimerization is expected. The lithium enolates derived from the camphor imines of ot-amino esters have been used by McIntosh s group for asymmetric alkylations (106-109). Their Michael additions to some a, p-unsaturated carbonyl compounds have now been examined, but no diastereoselectivity has been observed (108). It is also known that the A-pinanylidene-substituted a-amino esters function as excellent Michael donors in asymmetric Michael additions (110). Lithiation of the camphor... [Pg.774]


See other pages where Michael additions imines is mentioned: [Pg.328]    [Pg.41]    [Pg.101]    [Pg.140]    [Pg.156]    [Pg.269]    [Pg.309]    [Pg.605]    [Pg.606]    [Pg.606]    [Pg.205]    [Pg.8]    [Pg.173]    [Pg.82]    [Pg.178]    [Pg.758]    [Pg.769]    [Pg.770]    [Pg.775]   
See also in sourсe #XX -- [ Pg.774 , Pg.775 , Pg.776 , Pg.777 ]

See also in sourсe #XX -- [ Pg.774 , Pg.775 , Pg.776 , Pg.777 ]




SEARCH



Imine additions

Imine additions Michael reaction

Imine compounds Michael additions

Imines Michael-type addition

Imines, additions

Michael addition, acidic chiral imines

© 2024 chempedia.info