Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Core-shell micelles

Kang N, Perron ME, Prudhomme RE et al (2005) Stereocomplex block copolymer micelles core-shell nanostructures with enhanced stability. Nano Lett 5 315-319... [Pg.57]

Generally, the number of the shell chains in a microsphere ranges from a few hundred to a few thousand. The range of the diameter of the core is from 10-100 nm. Such a core-shell structure is very similar to the (AB)n type star block copolymers, which have many arms and spherical polymer micelles of the block or graft copolymers formed in selective solvents that are good for the corona sequence and bad for the core sequence. In fact, many theoretical investigations of the chain con-... [Pg.601]

Tamil S.S., Spatz, J.P., Klok H.A., and Martin M. Gold-polypyrrole core-shell particles in diblock copolymer micells, Aiiv. Mater., 10, 132, 1998. [Pg.164]

Nanoparticles of Mn and Pr-doped ZnS and CdS-ZnS were synthesized by wrt chemical method and inverse micelle method. Physical and fluorescent properties wra cbaractmzed by X-ray diffraction (XRD) and photoluminescence (PL). ZnS nanopatlicles aniKaled optically in air shows higher PL intensity than in vacuum. PL intensity of Mn and Pr-doped ZnS nanoparticles was enhanced by the photo-oxidation and the diffusion of luminescent ion. The prepared CdS nanoparticles show cubic or hexagonal phase, depending on synthesis conditions. Core-shell nanoparticles rahanced PL intensity by passivation. The interfacial state between CdS core and shell material was unchan d by different surface treatment. [Pg.757]

CdS and CdS-ZnS core-shell nanoparticles were synthesized by inverse micelle method. Crystallinity of CdS nanoparticles was hexagonal structure under the same molar ratio of CM and S precursor. However it was changed easily to cubic structure under the condition of sonication or higher concentration of Cd than S precursor. The interfacial state betwran CdS core and shell material was unchanged by different surface treatment. [Pg.760]

More recently Frechet and Gitsov [130] used a similar approach as above and synthesized a novel series of dendritic copolymers derived from a central penta-erythritol core unit. These hybrid star molecules behaved as unimolecular micelles with different core-shell conformational-structures as a response to the polarity of the solvent used. [Pg.57]

Figure 3 Example of SANS curves at two times of the reaction. The lines are calculations of the form factor. (A) prior to TEOS addition, the micelles are well described by core-shell spheres, with an external radius of 7.1 ran. ( ) 15 minutes after the beginning of the reaction, the micelles can be viewed as cylinders of length 50 nm and radius 6.9 nm. Figure 3 Example of SANS curves at two times of the reaction. The lines are calculations of the form factor. (A) prior to TEOS addition, the micelles are well described by core-shell spheres, with an external radius of 7.1 ran. ( ) 15 minutes after the beginning of the reaction, the micelles can be viewed as cylinders of length 50 nm and radius 6.9 nm.
Arimura H, Ohya Y, Ouchi T (2005) Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-Wock-polylactide diblock copolymer. Biomacromolecules 6 720-725... [Pg.58]

Fig. 30 Types of nanocarriers for drug delivery, (a) Polymeric nanoparticles polymeric nanoparticles in which drugs are conjugated to or encapsulated in polymers, (b) Polymeric micelles amphiphilic block copolymers that form nanosized core-shell structures in aqueous solution. The hydrophobic core region serves as a reservoir for hydrophobic drugs, whereas hydrophilic shell region stabilizes the hydrophobic core and renders the polymer water-soluble. Fig. 30 Types of nanocarriers for drug delivery, (a) Polymeric nanoparticles polymeric nanoparticles in which drugs are conjugated to or encapsulated in polymers, (b) Polymeric micelles amphiphilic block copolymers that form nanosized core-shell structures in aqueous solution. The hydrophobic core region serves as a reservoir for hydrophobic drugs, whereas hydrophilic shell region stabilizes the hydrophobic core and renders the polymer water-soluble.
In dilute aqueous solutions, copolymers having hydrophobic and hydrophilic parts may form polymeric micelles, i.e. stable particles with a core-shell structure. The association of the hydrophobic parts of the block copoly-... [Pg.35]

The copolymer-based systems possessing the core-shell structure in solutions are known and studied rather well (see, e.g., [14-16]). These copolymers in aqueous media tend to form polymeric micelles, which are often considered as promising drug delivery nano-vehicles [ 17,18], i.e., these macromolecular systems are not only of scientific, but also of considerable applied significance. Among such systems there are interesting examples, whose properties are very similar to the properties that should be inherent in the protein-like copolymers. All of these macromolecules possess the primary structure of... [Pg.104]

The more recently developed cryo-TEM technique has started to be used with increasing frequency for block copolymer micelle characterization in aqueous solution, as illustrated by the reports of Esselink and coworkers [49], Lam et al. [50], and Talmon et al. [51]. It has the advantage that it allows for direct observation of micelles in a glassy water phase and accordingly determines the characteristic dimensions of both the core and swollen corona provided that a sufficient electronic contrast is observed between these two domains. Very recent studies on core-shell structure in block copolymer micelles as visualized by the cryo-TEM technique have been reported by Talmon et al. [52] and Forster and coworkers [53]. In a very recent investigation, cryo-TEM was used to characterize aqueous micelles from metallosupramolecular copolymers (see Sect. 7.5 for further details) containing PS and PEO blocks. The results were compared to the covalent PS-PEO counterpart [54]. Figure 5 shows a typical cryo-TEM picture of both types of micelles. [Pg.90]

Micelles of type (1) were the first investigated examples of ABC triblock copolymer micelles. These micelles are generally characterized by the so-called onion, three-layer, or core-shell-corona structures, i.e., the first insoluble A block forms the micellar core, the second insoluble B block is wrapped around the core, and the third soluble C block extends in the solution to form the micellar corona (Fig. 18). To the best of our knowledge, there are no known examples of ABC block copolymer micelles with A and C insoluble blocks and a B soluble block. [Pg.124]

Core-shell-corona micelles were formed by PEHA-PMMA-PAA triblock copolymers in water, as demonstrated by Kriz et al. [266]. Ishizone et al. [267] synthesized ABC triblock copolymers containing 2-(perfluorobutyl)ethyl methacrylate, tBMA, and 2-(trimethylsilyloxy) ethyl methacrylate with various block sequences. These copolymers were converted into amphiphilic sys-... [Pg.124]

Fig. 18 Schematical representation of different types of micelles formed by ABC triblock copolymers. Core-shell-corona micelles with insoluble core and shell (a), core-shell-corona micelles with radially compartmentalized corona (b), and Janus micelles with laterally compartmentalized corona (c)... Fig. 18 Schematical representation of different types of micelles formed by ABC triblock copolymers. Core-shell-corona micelles with insoluble core and shell (a), core-shell-corona micelles with radially compartmentalized corona (b), and Janus micelles with laterally compartmentalized corona (c)...
Temperature- and pH-sensitive core-shell-corona micelles were also recently reported by Armes et al. Moreover, the shell of these CSC micelles could be selectively cross-linked [275]. [Pg.125]

For some applications, it is desirable to lock the micellar structure by cross-Hnking one of the micellar compartments, as discussed previously in Sect. 2.6. Cross-Hnked core-shell-corona micelles have been prepared and investigated by several groups as illustrated by the work of Wooley and Ma [278], who reported the cross-linking of PS-PMA-PAA micelles in aqueous solution by amidation of the PAA shell. Very recently, Wooley et al. prepared toroidal block copolymer micelles from similar PS-PMA-PAA copolymers dissolved in a mixture of water, THF, and 2,2-(ethylenedioxy)diethylamine [279]. Under optimized conditions, the toroidal phase was the predominant structure of the amphiphilic triblock copolymer (Fig. 19). The collapse of the negatively charged cylindrical micelles into toroids was found to be driven by the divalent 2,2-(ethylenedioxy)diethylamine cation. [Pg.126]

As introduced previously, type 2 ABC triblock copolymer micelles are formed by triblock copolymers containing an insoluble A block while the B and C blocks are soluble in the considered solvent. The insoluble blocks can be located either between the two soluble blocks (BAC structure) or at one end of the triblock (ABC or ACB structures). Micelles of the latter type were discussed above for, e.g., PS-P2VP-PEO pH-responsive micelles and are indeed considered as core-shell-corona, onion, or three-layer structures since the heterogeneity in the micellar corona is observed in the radial direction (Fig. 18). Micelles formed by BAC triblock copolymers are different from the previous case because they can give rise in principle to a heterogenous corona in the lateral dimension (Fig. 18). This could induce the formation of noncentrosymmetric micelles as discussed in Sect. 7.3. [Pg.127]

ABC triblock copolymers have recently proven to be useful in constructing the so-called three-layer, onion, or core-shell-corona micelles, as described in Sect. 7.2. These micelles are characterized by a centrosymmetric structure and a micellar core with two different concentric compartments. Noncentrosymmetric structures from ABC triblock copolymers blended with AC diblocks have, however, been reported in bulk by Goldacker et al. [290]. [Pg.128]

Figure 6.4 The preparation of nanostructured materials in solution evolves from (a) the classic examples of suspension, dispersion, or emulsion polymerization, to the methods that include the covalent crosslinking of select domains within supramolecular polymer assemblies (b) core crosslinking of polymer micelles (c) shell crosslinking of polymer micelles (SCKs) (d) nanocages from core-eroded SCKs (e) shaved hollow nanospheres from outer shell/core-eroded vesicles. Figure 6.4 The preparation of nanostructured materials in solution evolves from (a) the classic examples of suspension, dispersion, or emulsion polymerization, to the methods that include the covalent crosslinking of select domains within supramolecular polymer assemblies (b) core crosslinking of polymer micelles (c) shell crosslinking of polymer micelles (SCKs) (d) nanocages from core-eroded SCKs (e) shaved hollow nanospheres from outer shell/core-eroded vesicles.
Figure 6.5 Illustrations of nanoscale spherical assemblies resulting from block copolymer phase separation in solution are shown, along with the chemical compositions that have been employed to generate each of the nanostructures (a) core crosslinked polymer micelles (b) shell crosslinked polymer micelles (SCKs) with glassy cores (c) SCKs with fluid cores (d) SCKs with crystalline cores (e) nanocages, produced from removal of the core of SCKs (f) SCKs with the crosslinked shell shielded from solution by an additional layer of surface-attached linear polymer chains (g) crosslinked vesicles (h) shaved hollow nanospheres produced from cleavage of the internally and externally attached linear polymer chains from the structure of (g)... Figure 6.5 Illustrations of nanoscale spherical assemblies resulting from block copolymer phase separation in solution are shown, along with the chemical compositions that have been employed to generate each of the nanostructures (a) core crosslinked polymer micelles (b) shell crosslinked polymer micelles (SCKs) with glassy cores (c) SCKs with fluid cores (d) SCKs with crystalline cores (e) nanocages, produced from removal of the core of SCKs (f) SCKs with the crosslinked shell shielded from solution by an additional layer of surface-attached linear polymer chains (g) crosslinked vesicles (h) shaved hollow nanospheres produced from cleavage of the internally and externally attached linear polymer chains from the structure of (g)...
Polymeric micelles with selected chemistries and molecular architecture of block copolymers, such as PIPAAm-CigHgs, PIPAAm-PSt, PIPAAm-PBMA, and PIPAAm-PLA micelles, showed the same LCST and the same thermoreponsive phase transition kinetics as those for PIPAAm irrespective of the hydrophobic segment incorporation. This confirms two points (a) that hydroxyl groups or amino goups of PIPAAm termini completely react with the hydrophobic segment end groups and (b) that the block copolymers form core-shell micellar structures with hydrophobic iimer cores completely isolated from the aqueous phase. [Pg.35]

Cammas, S., Suzuki, K., Sone, Y, Sakurai, Y., Kataoka, K., and Okano, T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J. Contr. Rel, 1997,48, 157-164. [Pg.48]

Figure 4 shows typical SEC profiles of two PS-3-PI diblock copolymers before and after the photodimerization reaction. [46] The appearance of a peak after the UV irradiation at a short retention time with a doubled molar mass indicates the formation of PS-3-PI-C-PI-3-PS copolymer chains. In contrast, the irradiation of SI 42 in THF without the self-assembly only leads to a slight increase of the molar mass. It confirms that the self-assembly helps to concentrate and expose the reactive ends of precursor diblock copolymers on the periphery of the core-shell micelles, which greatly increases the coupling efficiency of the photodimmerization reaction between two coumarin end groups. [Pg.114]


See other pages where Core-shell micelles is mentioned: [Pg.345]    [Pg.25]    [Pg.196]    [Pg.589]    [Pg.345]    [Pg.25]    [Pg.196]    [Pg.589]    [Pg.156]    [Pg.69]    [Pg.56]    [Pg.83]    [Pg.910]    [Pg.36]    [Pg.49]    [Pg.88]    [Pg.125]    [Pg.136]    [Pg.199]    [Pg.123]    [Pg.156]    [Pg.160]    [Pg.37]    [Pg.38]    [Pg.55]    [Pg.8]    [Pg.111]   
See also in sourсe #XX -- [ Pg.144 , Pg.148 , Pg.152 ]




SEARCH



Core-shell

Micelle core

© 2024 chempedia.info