Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micellar precursors

Despite the success in the fabrication of nanoceramic lines by plasma etching of aligned micellar precursors, our further exploitations of PFS nanostructures were often frustrated by the labile nature of the self-assembled micelles in that they easily undergo dissociation in a common solvent or at an elevated temperature. [Pg.148]

Overall, the potential uses of these cross-linked materials are improved by their increased stability toward environmental changes such as concentration and temperature, compared to their non-cross-linked micellar precursors. The subsequent selective and reversible attachment of moieties to the cross-linked self-assembled architectures further extends the potential application of these materials toward their development as well-defined polymeric supports which can behave as controlled release vessels. However, a significant disadvantage of such materials is their sometimes difficult and time-consuming preparation, which is not ideal for large industrial scale applications. [Pg.3682]

The NOBS system undergoes an additional reaction that forms a diacyl peroxide as a result of the nucleophilic attack of the peracid anion on the NOBS precursor as shown in equation 21. This undesirable side reaction can be minimized by the use of an excess molar quantity of hydrogen peroxide (91,96) or by the use of shorter dialkyl chain acid derivatives. However, the use of these acid derivatives also appears to result in less efficient bleaching. The dependence of the acid group on the side product formation is apparentiy the result of the proximity of the newly formed peracid to unreacted NOBS in the micellar environment (91). A variety of other peracid precursor stmctures can be found (97—118). [Pg.147]

Much effort has been directed at developing aqueous Diels-Alder reactions toward the syntheses of a variety of complex natural products. Grieco employed micellar catalysis and pure water as the solvent for the Diels-Alder reaction of dienecarboxylate with a variety of dienophiles. For example, when the Diels-Alder reaction in Scheme 12.3 was carried out in water, a higher reaction rate and reversal of the selectivity were observed, compared with the same reaction in a hydrocarbon solvent (Scheme 12.3).81 Similarly, the reaction of 2,6-dimethylbenzoquinone with sodium ( )-3,5-hexadienoate (generated in situ by the addition of 0.95 equiv sodium bicarbonate to a suspension of the precursor acid in water) proceeded for 1 hour to give a 77% yield of the adduct... [Pg.393]

Oheme and co-workers investigated335 in an aqueous micellar system the asymmetric hydrogenation of a-amino acid precursors using optically active rhodium-phosphine complexes. Surfactants of different types significantly enhance both activity and enantioselectivity provided that the concentration of the surfactants is above the critical micelle concentration. The application of amphiphilized polymers and polymerized micelles as surfactants facilitates the phase separation after the reaction. Table 2 shows selected hydrogenation results with and without amphiphiles and with amphiphilized polymers for the reaction in Scheme 61.335... [Pg.119]

In summary, the examples given above demonstrate that immobilization of metal salts in a block copolymer micellar system followed by a reduction step is a suitable method to synthesize stable colloids with small particle sizes and narrow size distributions. Moreover, such systems are very interesting for catalytic applications because they offer the possibility of designing tailored catalysts for special demands and can be easily tuned by the choice and combination of different polymer block types and lengths, different types of the metal precursor and of the reduction method used. Additional introduction of further functionalities such as charges or chiral groups could make these catalyst systems even more versatile and effective. [Pg.286]

Thus, G. Oehme et al. employed two types of polysoaps in the micellar catalytic asymmetric hydrogenation of cinnamic acid acetamidates as amino acid precursors [81, 82]. [Pg.299]

It is noteworthy that the indenyl complex RuCl(ri -C9H7)(PPh3)2l4 provides an efficient catalyst precursor for the anti-Markovnikov hydration of terminal alkynes in aqueous media, especially in micellar solutions with either anionic (sodium dode-cylsulfate (SDS)) or cationic (hexadecyltrimethylammonium bromide (CTAB)) surfactants [38]. This system can be applied to the hydration of propargylic alcohols to selectively produce P-hydroxyaldehydes, whereas RuCl(Cp)(PMe3)2 gives a,P-unsat-urated aldehydes (the Meyer Schuster rearrangement products)(Scheme 10.8) [39]. [Pg.319]

Asphaltenes These are complex high-molecular-weight polycyclic aromatic compounds which may contain oxygen, sulfur, or nitrogen heteroatoms. They are found in crude oil and in certain heavy fuel oils in micellar form. Their dispersion throughout oil can be stabilized by asphaltene precursors called resins and maltenes. [Pg.340]

Figure 7.14 Self-reproduction in reverse micellar systems (a) The proposed mechanism of incorporation of the added precursor B, and the reaction A - - B leading to the surfactant S. , Lipophylic cosurfactant (in excess in the bulk) A, localized in the micellar core S, surfactant (A - - S). (b) Examples of some investigated chemical systems. (Adapted from Bachmann et al 1990 and 1991.)... Figure 7.14 Self-reproduction in reverse micellar systems (a) The proposed mechanism of incorporation of the added precursor B, and the reaction A - - B leading to the surfactant S. , Lipophylic cosurfactant (in excess in the bulk) A, localized in the micellar core S, surfactant (A - - S). (b) Examples of some investigated chemical systems. (Adapted from Bachmann et al 1990 and 1991.)...
Micellar catalysis is a broad field (Fendler and Fendler, 1975 Rathman, 1996 Rispens and Engberts, 2001), and caution is needed when using this term. In fact, whereas the broad term catalysis is justihed when referring to an increase of the velocity of reachon, this does not always mean that the velocity constant is increased (namely that there is a decrease of the specific activation energy). Rather, the velocity effect can be due to a concentration effect operated by the surface of the micelles. This is also the case for the autocatalytic self-reproduction of micelles discussed in the previous chapter, where the lipophilic precursor of the surfactant is concentrated on the hydrophobic surface of the fatty acid micelles (Bachmann et al., 1992), a feature that has given rise to some controversy (Mavelli and Luisi, 1996 Buhse etal, 1991 1998 Mavelli, 2004). [Pg.188]

The view that the monomers are confined to the reverse micellar pseudophase is supported by interfacial tension data (67), which demonstrate that in a two-phase octane/water system, partially hydrolyzed TEOS species partition preferentially into the aqueous phase. The interfacial tension determined at the octane/water interface for samples prepared with precursor ethanolic solutions of different water-to-TEOS molar ratios (h - 0, 0.29, and 0.55) are presented in Figure 2.2.14 (67). As can be seen, for TEOS concentrations below about 4 X 10- 1 M, the octane/water interfacial tension is independent of the concentration of TEOS species in the organic phase... [Pg.176]

Pyrene shown a number of photophysical features that made it an attractive fluorophore to probe the microenvironment in micellar aggregates [19]. For the peaks of pyrene PL, two important peaks at about 373 nm and 390 nm among the five dominant peaks of pyrene fluorescence were numbered as 1 and III, respectively [20]. It has been known that intensity ratio of peak 111 to I (III/I) increased as the polarity at the solubilization site of pyrene decreases. Figure 6 shows fluorescence spectra (A.ex = 310 nm) of pyrene in precursor gel containing TPA and I-IV samples denoted as (a), (b), (c), (d) and (e), respectively. The value of 111/1 of pyrene does not change under silicalite-1 gel due to no formation of micelle. However, in the Fig. 6d (sample II), III/I ratio is rapidly increased, while sample III and IV are decreased slightly again. Previously, Park et al. have reported that 111/1 ratio of pyrene for... [Pg.114]


See other pages where Micellar precursors is mentioned: [Pg.74]    [Pg.38]    [Pg.74]    [Pg.38]    [Pg.374]    [Pg.729]    [Pg.157]    [Pg.241]    [Pg.11]    [Pg.285]    [Pg.118]    [Pg.11]    [Pg.98]    [Pg.99]    [Pg.213]    [Pg.85]    [Pg.120]    [Pg.213]    [Pg.216]    [Pg.188]    [Pg.174]    [Pg.67]    [Pg.86]    [Pg.87]    [Pg.202]    [Pg.263]    [Pg.111]    [Pg.261]    [Pg.393]    [Pg.88]    [Pg.92]    [Pg.104]    [Pg.89]    [Pg.89]    [Pg.90]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Nanotube Preparation from Micellar Precursors

© 2024 chempedia.info