Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mevalonate phosphorylation

As summarized in Figure 27.7, the mevalonate pathway begins with the conversion of acetate to acetyl CoA, followed by Claisen condensation to yield acetoacety) CoA. A second carbonyl condensation reaction with a third molecule of acetyl CoA, this one an aldol-like process, then yields the six-carbon compound 3-hydroxy-3-methylglutaryl CoA, which is reduced to give mevalonate. Phosphorylation, followed by loss of C02 and phosphate ion, completes the process. [Pg.1072]

In keeping with its biogenetic origin m three molecules of acetic acid mevalonic acid has six carbon atoms The conversion of mevalonate to isopentenyl pyrophosphate involves loss of the extra carbon as carbon dioxide First the alcohol hydroxyl groups of mevalonate are converted to phosphate ester functions—they are enzymatically phosphorylated with introduction of a simple phosphate at the tertiary site and a pyrophosphate at the primary site Decarboxylation m concert with loss of the terti ary phosphate introduces a carbon-carbon double bond and gives isopentenyl pyrophos phate the fundamental building block for formation of isoprenoid natural products... [Pg.1091]

The principal steps in the mechanism of polyisoprene formation in plants are known and should help to improve the natural production of hydrocarbons. Mevalonic acid, a key intermediate derived from plant carbohydrate via acetylcoen2yme A, is transformed into isopentenyl pyrophosphate (IPP) via phosphorylation, dehydration, and decarboxylation (see Alkaloids). IPP then rearranges to dimethylaHyl pyrophosphate (DMAPP). DMAPP and... [Pg.20]

Step 4 of Figure 27.7 Phosphorylation and Decarboxylation Three addition reactions are needed to convert mevalonate to isopentenyl diphosphate. Th first two are straightforward phosphorylations that occur by nucleophilic sul stitution reactions on the terminal phosphorus of ATP. Mevalonate is first cor verted to mevalonate 5-phosphate (phosphomevalonate) by reaction wit ATP in a process catalyzed by mevalonate kinase. Mevalonate 5-phosphat then reacts with a second ATP to give mevalonate 5-diphosphate (diphosphc mevalonate). The third reaction results in phosphorylation of the tertiar hydroxyi group, followed by decarboxylation and loss of phosphate ion. [Pg.1075]

Step 2—Formation of Isoprenoid Units Mevalonate is phosphorylated sequentially by ATP by three kinases, and after decarboxylation (Figure 26-2) the active isoprenoid unit, isopentenyl diphosphate, is formed. [Pg.219]

Formation of isopentenyl diphosphate. After phosphorylation, mevalonate is decar-boxylated to isopentenyl diphosphate, with consumption of ATP. This is the component from which all of the isoprenoids are built (see p. 53). [Pg.172]

Mevalonic acid is then modified by phosphorylation and decarboxylation, and several molecules of it are condensed to form cholesterol in a complex series of eight reactions. [Pg.115]

Figure 8-6. Hormonal regulation of cholesterol synthesis by reversible phosphorylation of HMG CoA reductase. Availability of mevalonic acid as the fundamental building block of the sterol ring system controls flux through the pathway that follows. cAMP, cyclic adenosine monophosphate HMG CoA, hydroxymethylglutary I CoA. Figure 8-6. Hormonal regulation of cholesterol synthesis by reversible phosphorylation of HMG CoA reductase. Availability of mevalonic acid as the fundamental building block of the sterol ring system controls flux through the pathway that follows. cAMP, cyclic adenosine monophosphate HMG CoA, hydroxymethylglutary I CoA.
The phosphorylation of mevalonate and presence of pyrophosphate in subsequent structures help keep these water-insoluble compounds in solution. [Pg.220]

The two-step reduction of HMG-CoA to mevalonate (Fig. 22-1, step a)n 15 is highly controlled, a major factor in regulating cholesterol synthesis in the human liver.121617 The N-terminal portion of the 97-kDa 888-residue mammalian FlMG-CoA reductase is thought to be embedded in membranes of the ER, while the C-terminal portion is exposed in the cytoplasm.16 Tire enzyme is sensitive to feedback inhibition by cholesterol (see Section D, 2). The regulatory mechanisms include a phosphorylation-dephosphorylation cycle and control of both the rates of synthesis and of proteolytic degradation of this key en-... [Pg.1227]

In animals all isoprenoid compounds are apparently synthesized from mevalonate, which is converted by the consecutive action of two kinases21 23 into mevalonate 5-diphosphate (Fig. 22-1, step b). Mevalonate kinase is found predominantly in peroxisomes, which are also active in other aspects of steroid synthesis in humans.2124 A deficiency of this enzyme is associated with mevalonic aciduria, a serious hereditary disease in which both blood and urine contain very high concentrations of mevalonate.23 Mevalonate diphosphate kinase, which is also a decarboxylase, catalyzes phosphorylation of the 3-OH group of mevalonate (step c, Fig. 22-1) and decarboxylative elimination of phosphate (step d)25 to form isopentenyl diphosphate. [Pg.1227]

Steroids are members of a large class of lipid compounds called terpenes. Using acetate as a starting material, a variety of organisms produce terpenes by essentially Lire same biosynlheLic scheme (Fig. 3). The sell-condensation of two molecules of acetyl coenzyme A (CoA) forms acetoacetyl CoA. Condensation of acetoacetyl CoA with a third molecule of acetyl CoA, then followed by an NADPH-mediated reduction of the thioester moiety produces mevalonic acid (22). Phosphorylation of (22) followed by concomitant decarboxylation and dehydration processes... [Pg.1549]

Formation of the biological isoprene unit from mevalonic acid has been shown to proceed by stepwise phosphorylation of both alcohol groups, then elimination and decarboxylation to yield 3-methyl-3-butenyl pyrophosphate, 9 (often called A3-isopentenyl pyrophosphate) ... [Pg.1483]

If sterol content and conformation are so important for membrane stability, we should study the biosynthesis of sterols (Figure 3). The first enzyme in terpenoid biosynthesis is the 3-Hydroxy-3-Methyl-Glutary1-Coenzyme A-reductase (HMG-CoA-reductase) that catalyzes the synthesis of mevalonate. Two phosphorylations and decarboxylation of mevalonate lead to isopentenylpyrophosphate, the basic C -unit in sterol synthesis. Isopentenylpyrophosphate reacts with its isomer, the dimethylally1-pyrophosphate, in a head/tail-reaction to geranyl-pyrophosphate reaction with another C -unit leads to farnesyl-pyro-phosphate, that dimerizes in a tail/tail-reaction to squalene. After expoxidation of its A -double bond, squalene cyclizes to lano-... [Pg.27]

All the major biosynthetic pathways use acetyl-CoA as the basic building block, and in each pathway the rate limiting enzyme is regulated by phosphorylation with the phosphorylated enzyme being active. In the biosynthesis of cholesterol, the rate limiting step is catalyzed by hydroxymethylglutaryl-CoA (HMG-CoA) reductase. Initially, three molecules of acetyl-CoA are condensed to produce /5-HMG-CoA. HMG-CoA reductase then uses two NADPH molecules to reduce HMG-CoA to mevalonate-CoA. The remaining steps in cholesterol biosynthesis are numerous and well-documented. [Pg.26]

Mevalonate molecules are condensed to a 30-carbon compound, squalene. The alcohol groups of mevalonate are first phosphorylated. Then they multiply phosphorylated mevalonate decarboxylates to make the two compounds isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). [Pg.31]

The IBP and its products are displayed in Figure 12.1. HMG-CoA, ultimately derived from acetyl-CoA is converted to mevalonate via the enzyme HMG-CoA reductase (HMGR) [8]. This reaction is the rate-limiting step in the pathway. Mevalonate is then phosphorylated via mevalonate kinase (MK) to yield 5-phosphomevalonate [9]. IPP is formed following additional phosphorylation and decarboxylation steps [10]. Isomerization of IPP via the enzyme IPP isomerase yields DMAPP [11]. In mammals, the enzyme farnesyl pyrophosphate synthase (FDPS) catalyzes the synthesis of both GPP and FPP [12]. In plants, a separate GPP synthase has been identified [13]. GPP is a key intermediate in plants as it serves as the precursor for all monoterpenes. In animals, however, GPP appears to serve only as an intermediate in the synthesis of FPP. Very low basal levels of GPP have been measured in cell culture, although cellular GPP levels can become markedly increased in the setting of FDPS inhibition [14]. [Pg.282]

The classic route for the formation of the C5 building blocks of terpenoid bios)mthesis in plants is via the reactions of the mevaionate pathway, first demonstrated in yeast and mammals. This well-characterized sequence (Fig. 5.3) involves the stepwise condensation of three molecules of acetyl coenz)mie A (AcCoA) to form the branched C6 compound, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Following the reduction of HMG-CoA to mevalonic acid, two successive phosphorylations and a decarboxylationelimination yield the C5 compound, IFF. [Pg.265]

It is believed that the function of ATP is to phosphorylate mevalonic acid pyrophosphate at the 3-position. [Pg.864]


See other pages where Mevalonate phosphorylation is mentioned: [Pg.20]    [Pg.20]    [Pg.426]    [Pg.836]    [Pg.220]    [Pg.154]    [Pg.155]    [Pg.332]    [Pg.487]    [Pg.170]    [Pg.172]    [Pg.171]    [Pg.1187]    [Pg.751]    [Pg.160]    [Pg.302]    [Pg.1075]    [Pg.1075]    [Pg.1941]    [Pg.13]    [Pg.214]    [Pg.214]    [Pg.329]    [Pg.1075]   
See also in sourсe #XX -- [ Pg.367 ]

See also in sourсe #XX -- [ Pg.367 ]




SEARCH



Mevalonate 5-diphosphate decarboxylase phosphorylation

Mevalonate, biosynthesis phosphorylation

Mevalonates

Mevalonic

Mevalonic acid phosphorylation

Phosphorylation of mevalonic acid

© 2024 chempedia.info