Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylcobalamin enzymes

The roles of methylcobalamin in biological processes are still being discovered and are bound to become increasingly diverse. The story of methionine synthase and MetH has been enlightening and elegant. However, it is very likely the beginning of the story of methylcobalamin. The other methylcobalamin enzymes are involved in many different chemical processes, from methylation of non-nucleophilic atoms to reduction in methanogenesis. The elucidation of the roles of methylcobalamin will usher in new chemistry for the field of vitamin Bj2. [Pg.541]

Vitamin B12 appears in two coenzymatic forms, namely methylcobalamin (cytosol) and 5 -deoxyadenosylcoba-lamin (mitochondria). Vitamin B 12-dependent enzymes are [1]... [Pg.1291]

Lenhert and Hodgkin (15) revealed with X-ray diffraction techniques that 5 -deoxyadenosylcobalamin (Bi2-coenzyme) contained a cobalt-carbon o-bond (Fig. 3). The discovery of this stable Co—C-tr-bond interested coordination chemists, and the search for methods of synthesizing coen-zyme-Bi2 together with analogous alkyl-cobalt corrinoids from Vitamin B12 was started. In short order the partial chemical synthesis of 5 -de-oxyadenosylcobalamin was worked out in Smith s laboratory (22), and the chemical synthesis of methylcobalamin provided a second B 12-coenzyme which was found to be active in methyl-transfer enzymes (23). A general reaction for the synthesis of alkylcorrinoids is shown in Fig. 4. [Pg.54]

It soon became apparent that the biologically active forms of Vitamin Bj.2 contained the unique Co—C-a-bond, and the instability of these covalent compounds to visible light facilitated observations on the occurrence of functional corrinoids in a number of enzymes. Deoxyadenosyl-cobalamin was found to be the most abundant corrinoid in bacteria (24) and in mammalian liver (25). Methylcobalamin was found in Escherichia coli (26), calf liver and human blood plasma (27), and also in a number of Clostridia (28). [Pg.55]

Methylcobalamin acts as the functional molecule for methyl-transfer in a second group of enzyme reactions. Theoretically methyl-transfer... [Pg.55]

Hill et al. (141) hrst observed that light-stable yellow alkylcorrinoids could be synthesized. When methylcobalamin was treated with picrate, a yellow corrinoid was isolated which was shown to be stable to light, but unstable to cyanide. Similarly, Taylor and Weissbach (67) demonstrated that the methylcorrinoid-enzyme complex of N5-methyl-tetrahydro-folate-homocysteine transmethylase was stable to light, but isolation of... [Pg.96]

The enzyme mediating remethylation, 5-methyltetrahy-drofolate-betaine methyltransferase (Fig. 40-4 reaction 4), utilizes methylcobalamin as a cofactor. The kinetics of the reaction favor remethylation. Faulty remethylation can occur secondary to (1) dietary factors, e.g. vitamin B12 deficiency (2) a congenital absence of the apoenzyme (3) a congenital inability to convert folate or B12 to the methylated, metabolically active form (see below) or (4) the presence of a metabolic inhibitor, e.g. an antifolate agent that is used in an antineoplastic regimen. [Pg.675]

Methionine synthase deficiency (cobalamin-E disease) produces homocystinuria without methylmalonic aciduria. This enzyme mediates the transfer of a methyl group from methyltetrahydrofolate to homocysteine to yield methionine (Fig. 40-4 reaction 4). A cobalamin group bound to the enzyme is converted to methylcobalamin prior to formation of methionine. [Pg.677]

The vitamin cobalamin (vitamin Bjj) is reduced and activated in the body to two forms, adeno-sylcobalamin, used by methylmalonyl CoA mutase, and methylcobalamin, formed from methyl-THF in the N-methyl THF-homocysteine methyltransferase reaction. These are the only two enzymes that use vitamin (other than the enzymes that reduce and add an adenosyl group to it). [Pg.250]

Researchers studying the metalloenzyme hydrogenase would like to design small compounds that mimic this enzyme s ability to reversibly reduce protons to H2 and H2 to 2H+, using an active center that contains iron and nickel. Cobalamins (vitamin and its derivatives) contain an easily activated Co-C bond that has a number of biological functions, one of which is as a methyl transferase, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR). This enzyme converts homocysteine (an amino acid that has one more CH2 group in its alkyl side chain than cysteine see Figure 2.2) to methionine as methylcobalamin is converted to cobalamin. [Pg.22]

Vitamin B12 consists of a porphyrin-like ring structure, with an atom of Co chelated at its centre, linked to a nucleotide base, ribose and phosphoric acid (6.34). A number of different groups can be attached to the free ligand site on the cobalt. Cyanocobalamin has -CN at this position and is the commercial and therapeutic form of the vitamin, although the principal dietary forms of B12 are 5 -deoxyadenosylcobalamin (with 5 -deoxyadeno-sine at the R position), methylcobalamin (-CH3) and hydroxocobalamin (-OH). Vitamin B12 acts as a co-factor for methionine synthetase and methylmalonyl CoA mutase. The former enzyme catalyses the transfer of the methyl group of 5-methyl-H4 folate to cobalamin and thence to homocysteine, forming methionine. Methylmalonyl CoA mutase catalyses the conversion of methylmalonyl CoA to succinyl CoA in the mitochondrion. [Pg.206]

The structure of the E. coli enzyme (Fig. 16-24) shows methylcobalamin bound in a base-off conformation, with histidine 759 of the protein replacing dimethylbenzimidazole in the distal coordination position on the cobalt. This histidine is part of a sequence Asp-X-His-X-X-Gly that is found not only in methionine synthase but also in methylmalonyl-CoA mutase, glutamate mutase, and 2-methyleneglutarate mutase. However, diol dehydratase lacks this sequence and binds adenosylcobalamin with the dimethylbenz-imidazole-cobalt bond intact.417... [Pg.875]

The coenzyme evidently functions in a cyclic process. The cobalt alternates between the +1 and +3 oxidation states as shown in Eq. 16-43. The first indication of such a cyclic process was the report by Weissbach that 14C-labeled methylcobalamin could be isolated following treatment of the enzyme with such methyl donors as AdoMet and methyl iodide... [Pg.875]

Vitamin B12 is a biologically active corrinoid, a group of cobalt-containing compounds with macrocyclic pyrrol rings. Vitamin B12 functions as a cofactor for two enzymes, methionine synthase and L-methylmalonyl coenzyme A (CoA) mutase. Methionine synthase requires methylcobalamin for the methyl transfer from methyltetrahydrofolate to homocysteine to form methionine tetrahy-drofolate. L-methylmalonyl-CoA mutase requires adenosylcobalamin to convert L-methylmalonyl-CoA to succinyl-CoA in an isomerization reaction. An inadequate supply of vitamin B12 results in neuropathy, megaloblastic anemia, and gastrointestinal symptoms (Baik and Russell, 1999). [Pg.343]

Interaction with Adenosylcobalamin. It has been considered generally that adenosylcobalamin or its analogs binds to the apoprotein of diol dehydrase or other adenosylcobalamin-dependent enzymes almost irreversibly (4). However, we found that the holo-enzyme of diol dehydrase was resolved completely into intact apoen-zyme and adenosylcobalamin when subjected to gel filtration on a Sephadex G-25 column in the absence of K+ (9, 10). Among the inactive complexes of diol dehydrase with irreversible cobalamin inhibitors, those with cyanocobalamin and methylcobalamin also were resolved upon gel filtration on Sephadex G-25 in the absence of both K+ and substrate, yielding the apoenzyme, which was reconstitutable into the active holoenzyme (II). The enzyme-hydroxocobalamin complex, however, was not resolvable under the same conditions. The enzyme-cobalamin complexes were not resolved at all by gel filtration in the presence of both K+ and substrate. When gel filtration of the holoenzyme was carried out in the presence of K+ only, the holoen-... [Pg.149]

A troublesome feature of this mechanistic interpretation is the absence of direct supporting evidence that the Co-C bond in coenzyme B12 (whose dissociation energy has not yet been determined) is sufficiently weak that facile homolysis under the mild conditions of the enzymic reactions is a plausible process. In fact, alkylcobalamins, including coenzyme B12, exhibit considerable thermal stability and typically do not decompose at measurable rates, in the absence of light or reagents such as 02, until fairly elevated temperatures ( 200°C for methylcobalamin) (4). Among the possible interpretations of this behavior are ... [Pg.170]

Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine. Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine.
Vitamin B12 is required by only two enzymes in human metabolism methionine synthetase and L-methylmalonyl-CoA mutase. Methionine synthetase has an absolute requirement for methylcobalamin and catalyzes the conversion of homocysteine to methionine (Fig. 28-5). 5-Methyltetrahydrofolate is converted to tetrahydrofolate (THF) in this reaction. This vitamin B12-catalyzed reaction is the only means by which THF can be regenerated from 5-methyltetrahydrofolate in humans. Therefore, in vitamin B12 deficiency, folic acid can become trapped in the 5-methyltetrahydrofolate form, and THF is then unavailable for conversion to other coenzyme forms required for purine, pyrimidine, and amino acid synthesis (Fig. 28-6). All folate-dependent reactions are impaired in vitamin B12 deficiency, resulting in indistinguishable hematological abnormalities in both folate and vitamin B12 deficiencies. [Pg.308]

Drennan, C. L., Matthews, R. G., and Ludwig, M. L., 1994b, Cobalamin-dependent methionine synthase the structure of a methylcobalamin-binding fragment and implications for other Bi2-dependent enzymes. Curr. Opin. Struct. Biol. 4 9199929. [Pg.398]

The metabolically important functions of the Bn-derivatives are directly concerned either with enzymatically controlled organometalhc reactions involving protein-bound adenosylcobamides (such as coenzyme B12, (3)), or methyl-Co -corrinoids (such as methylcobalamin, (4)), or with enzyme-controlled redox reactions. Studies on the underlying biologically relevant organometalhc chemistry of the Bi2-coenzymes in homogeneous (protic) solution, as well as the characterization of the enzymatic processes themselves have attracted considerable interest. ... [Pg.798]


See other pages where Methylcobalamin enzymes is mentioned: [Pg.59]    [Pg.438]    [Pg.438]    [Pg.59]    [Pg.438]    [Pg.438]    [Pg.112]    [Pg.113]    [Pg.485]    [Pg.56]    [Pg.57]    [Pg.60]    [Pg.62]    [Pg.337]    [Pg.602]    [Pg.675]    [Pg.264]    [Pg.7]    [Pg.71]    [Pg.82]    [Pg.46]    [Pg.674]    [Pg.876]    [Pg.637]    [Pg.643]    [Pg.346]    [Pg.745]    [Pg.161]    [Pg.301]    [Pg.113]    [Pg.354]   


SEARCH



Methylcobalamin

Methylcobalamine

© 2024 chempedia.info