Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl methacrylate mechanism

Figure 7.5 Arrhenius plot of inverse correlation times (1/tc) measured by various techniques for poly(methyl methacrylate). ( ) Mechanical ( + ) dielectric (o) NMR. Reprinted with permission from [3]. (c) (1971) American Chemical Society. Figure 7.5 Arrhenius plot of inverse correlation times (1/tc) measured by various techniques for poly(methyl methacrylate). ( ) Mechanical ( + ) dielectric (o) NMR. Reprinted with permission from [3]. (c) (1971) American Chemical Society.
Figure 7.7 Fj versus fj for styrene (Mi)-methyl methacrylate (M2) copoly mers prepared by the mechanisms indicated. [From D. C. Pepper, Q. Revie London 8 88 (1954).]... Figure 7.7 Fj versus fj for styrene (Mi)-methyl methacrylate (M2) copoly mers prepared by the mechanisms indicated. [From D. C. Pepper, Q. Revie London 8 88 (1954).]...
Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

In poly(ethylene terephthalate) (14—16) and poly(methyl methacrylate) (17—19), the mechanism of action of phosphoms flame retardants is at least partly attributable to a decrease in the amount of combustible volatiles and a corresponding increase in nonvolatile residue (char). In poly(methyl methacrylate), the phosphoms flame retardant appears to cause an initial cross-linking through anhydride linkages (19). [Pg.475]

Table 3. Comparison of Mechanical Properties of Polyacrylate and Methyl Methacrylate ... Table 3. Comparison of Mechanical Properties of Polyacrylate and Methyl Methacrylate ...
The cross-linking reaction mechanism is also influenced by the presence of other monomers. Methyl methacrylate is often used to improve the uv resistance of styrene-based resins. However, the disparate reaction rates of styrene and methacrylate monomer with the fumarate unsaturation not only preclude the use of more than 8% of the methacrylate monomer due to the significant slowing of the cross-linking reaction but also result in undercured products. [Pg.318]

Poly(methyl methacrylate) and poly(vinyl acetate) precipitate from the resin solution as it cures. This mechanism offsets the contraction in volume as the polyester resin cross-links, resulting in a nonshrinking thermoset. Other polymer additives such as poly(butylene adipate) provide similar shrinkage... [Pg.322]

Tetraneopentyltitanium [36945-13-8] Np Ti, forms from the reaction of TiCl and neopentyllithium ia hexane at —80° C ia modest yield only because of extensive reduction of Ti(IV). Tetranorbomyltitanium [36333-76-3] can be prepared similarly. When exposed to oxygen, (NpO)4Ti forms. If it is boiled ia ben2ene, it decomposes to neopentane. When dissolved ia monomers, eg, a-olefins or dienes, styrene, or methyl methacrylate, it initiates a slow polymerisation (211,212). Results from copolymerisation studies iadicate a radical mechanism (212). Ultraviolet light iacreases the rate of dissociation to... [Pg.155]

The dynamic mechanical properties of VDC—VC copolymers have been studied in detail. The incorporation of VC units in the polymer results in a drop in dynamic modulus because of the reduction in crystallinity. However, the glass-transition temperature is raised therefore, the softening effect observed at room temperature is accompanied by increased brittleness at lower temperatures. These copolymers are normally plasticized in order to avoid this. Small amounts of plasticizer (2—10 wt %) depress T significantly without loss of strength at room temperature. At higher levels of VC, the T of the copolymer is above room temperature and the modulus rises again. A minimum in modulus or maximum in softness is usually observed in copolymers in which T is above room temperature. A thermomechanical analysis of VDC—AN (acrylonitrile) and VDC—MMA (methyl methacrylate) copolymer systems shows a minimum in softening point at 79.4 and 68.1 mol % VDC, respectively (86). [Pg.434]

Hard lenses can be defined as plastic lenses that contain no water, have moduli in excess of 5 MPa (500 g/mm ), and have T well above the temperature of the ocular environment. Poly(methyl methacrylate) (PMMA) has excellent optical and mechanical properties and scratch resistance and was the first and only plastic used as a hard lens material before higher oxygen-permeable materials were developed. PMMA lenses also show excellent wetting in the ocular environment even though they are hydrophobic, eg, the contact angle is 66°. [Pg.101]

Mechanical properties of a hydrogel lens also are affected by the use of a hydrophobic monomer, such as a low alkyl methacrylate. This is particularly important when the water content of the hydrogel lens is very high. The use of these methacrylates helps preserve the required mechanical strength. Methyl methacrylate [80-62-6] (MMA) (I2I), isobutyl methacrylate [97-86-9] (122), and / -pentyl methacrylate [2849-98-1] (123) all have been used for this purpose. [Pg.104]

Pure polymeric acrylonitrile is not an interesting fiber and it is virtually undyeable. In order to make fibers of commercial iaterest acrylonitrile is copolymerized with other monomers such as methacrylic acid, methyl methacrylate, vinyl compounds, etc, to improve mechanical, stmctural, and dyeing properties. Eibers based on at least 85% of acrylonitrile monomer are termed acryHc fibers those containing between 35—85% acrylonitrile monomer, modacryhc fibers. The two types are in general dyed the same, although the type and number of dye sites generated by the fiber manufacturing process have an influence (see Eibers, acrylic). [Pg.362]

Mechanical properties are typical of a rigid plastics material and numerical values (Table 30.2) are similar to those for poly(methyl methacrylate). Although thermosetting, it has a low heat distortion temperature ( 80°C) and is not particularly useful at elevated temperatures. [Pg.859]

Which mechanism of termination will be preferably applied depends largely on the monomer used. Thus, methyl methacrylate chains terminate to a large extent by disproportionation, whereas styrene chains tend to termination by combination. The ratios of termination rate constants 8 = ktJkic (for disproportionation, td, combination,, c) are 5 == 0 and 5 = 2 for styrene [95] and methyl methacrylate [96], respectively. In the case of styrene, however, the values of 8 reported in the literature are at variance. Berger and Meyerhoff [97] found 8 = 0.2, at 52°C. Therefore, it is possible that a fraction of styrene terminates by disproportionation. [Pg.747]

There are some indications that the situation described above has been realized, at least partially, in the system styrene-methyl methacrylate polymerized by metallic lithium.29 29b It is known51 that in a 50-50 mixture of styrene and methyl methacrylate radical polymerization yields a product of approximately the same composition as the feed. On the other hand, a product containing only a few per cent of styrene is formed in a polymerization proceeding by an anionic mechanism. Since the polymer obtained in the 50-50 mixture of styrene and methyl methacrylate polymerized with metallic lithium had apparently an intermediate composition, it has been suggested that this is a block polymer obtained in a reaction discussed above. Further evidence favoring this mechanism is provided by the fact that under identical conditions only pure poly-methyl methacrylate is formed if the polymerization is initiated by butyl lithium and not by lithium dispersion. This proves that incorporation of styrene is due to a different initiation and not propagation. [Pg.150]

Spin orbitals, 258, 277, 279 Square well potential, in calculation of thermodynamic quantities of clathrates, 33 Stability of clathrates, 18 Stark effect, 378 Stark patterns, 377 Statistical mechanics base, clathrates, 5 Statistical model of solutions, 134 Statistical theory for clathrates, 10 Steam + quartz system, 99 Stereoregular polymers, 165 Stereospecificity, 166, 169 Steric hindrance, 376, 391 Steric repulsion, 75, 389, 390 Styrene methyl methacrylate polymer, 150... [Pg.411]

IUPAC recommendations suggest that a copolymer structure, in this case poly(methyl methacrylate-co-styrene) or copoly(methyl methacrylate/slyrene), should be represented as 1. The most substituted carbon of the configurational repeat unit should appear first. This same rule would apply to the copolymer segments shown in Section 7.1. However, as was mentioned in Chapter I, in this book, because of the focus on mechanism, we have adopted the more traditional depiction 2 which follows more readily from the polymerization mechanism. [Pg.335]

Kochi (1956a, 1956b) and Dickerman et al. (1958, 1959) studied the kinetics of the Meerwein reaction of arenediazonium salts with acrylonitrile, styrene, and other alkenes, based on initial studies on the Sandmeyer reaction. The reactions were found to be first-order in diazonium ion and in cuprous ion. The relative rates of the addition to four alkenes (acrylonitrile, styrene, methyl acrylate, and methyl methacrylate) vary by a factor of only 1.55 (Dickerman et al., 1959). This result indicates that the aryl radical has a low selectivity. The kinetic data are consistent with the mechanism of Schemes 10-52 to 10-56, 10-58 and 10-59. This mechanism was strongly corroborated by Galli s work on the Sandmeyer reaction more than twenty years later (1981-89). [Pg.250]

Using these macroinitiators PDMS-polystyrene and PDMS-poly(methyl methacrylate) multiblock copolymers were synthesized 305). Due to the backbone Structure of these macroinitiators and their thermolysis mechanisms, the copolymers obtained... [Pg.56]

Siloxane containing interpenetrating networks (IPN) have also been synthesized and some properties were reported 59,354 356>. However, they have not received much attention. Preparation and characterization of IPNs based on PDMS-polystyrene 354), PDMS-poly(methyl methacrylate) 354), polysiloxane-epoxy systems 355) and PDMS-polyurethane 356) were described. These materials all displayed two-phase morphologies, but only minor improvements were obtained over the physical and mechanical properties of the parent materials. This may be due to the difficulties encountered in controlling the structure and morphology of these IPN systems. Siloxane modified polyamide, polyester, polyolefin and various polyurethane based IPN materials are commercially available 59). Incorporation of siloxanes into these systems was reported to increase the hydrolytic stability, surface release, electrical properties of the base polymers and also to reduce the surface wear and friction due to the lubricating action of PDMS chains 59). [Pg.62]

Both termination mechanisms have been shown to occur experimentally, the method being to examine the polymer molecules formed for fragments of initiator. In such a way polystyrene has been found to terminate mainly by combination and poly(methyl methacrylate) entirely by disproportionation at temperatures above 60 °C. [Pg.26]

The state of the surface of a brittle solid has been found to exert a considerable influence on the mechanical behaviour observed it is at least as important as the underlying molecular constitution in this regard. The presence of microscopic scratches, voids, or other imperfections will seriously weaken the tensile strength of specimens of glassy polymer, such as poly(methyl methacrylate) at ambient temperatures. [Pg.100]


See other pages where Methyl methacrylate mechanism is mentioned: [Pg.468]    [Pg.486]    [Pg.426]    [Pg.154]    [Pg.149]    [Pg.322]    [Pg.42]    [Pg.350]    [Pg.18]    [Pg.422]    [Pg.472]    [Pg.190]    [Pg.89]    [Pg.416]    [Pg.145]    [Pg.377]    [Pg.750]    [Pg.166]    [Pg.17]    [Pg.71]    [Pg.26]    [Pg.87]    [Pg.46]    [Pg.102]    [Pg.56]    [Pg.484]   
See also in sourсe #XX -- [ Pg.358 , Pg.366 ]




SEARCH



Mechanical properties methyl methacrylate)

Methyl methacrylate

© 2024 chempedia.info