Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl ionization potential

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

The axial C—H bonds are weaker flian the equatorial C—H bonds as can be demonstrated by a strongly shifted C—H stretching frequency in the IR spectrum. Axial C-2 and C-6 methyl groins lower the ionization potential of the lone-pair electrons on nitrogen substantially more than do equatorial C-2 or C-6 methyl groups. Ehscuss the relationship between these observations and provide a rationalization in terms of qualitative MO theory. [Pg.70]

IV-methyl pyrolidinone is used in most cases. Figure 5.31 summarizes the main reaction which can take place during the process and the corresponding rate constant. The formation of diamide has also been evidenced.140 The reactivity is governed by the electron affinity of the anhydride and the ionization potential or basicity of the diamine (see Section 5.2.2.1). When a diacid with a low electron affinity reacts with a weak nucleophilic diamine, a low-molecular-weight is obtained, because the reverse reaction is not negligible compared with the forward reaction. [Pg.302]

The low solubility of fullerene (Ceo) in common organic solvents such as THE, MeCN and DCM interferes with its functionalization, which is a key step for its synthetic applications. Solid state photochemistry is a powerful strategy for overcoming this difficulty. Thus a 1 1 mixture of Cgo and 9-methylanthra-cene (Equation 4.10, R = Me) exposed to a high-pressure mercury lamp gives the adduct 72 (R = Me) with 68% conversion [51]. No 9-methylanthracene dimers were detected. Anthracene does not react with Ceo under these conditions this has been correlated to its ionization potential which is lower than that of the 9-methyl derivative. This suggests that the Diels-Alder reaction proceeds via photo-induced electron transfer from 9-methylanthracene to the triplet excited state of Ceo-... [Pg.168]

Formerly, we used for < the value of 11.22 eV, which is commonly employed in closed-shell calculations, but a correct interpretation of ionization potentials requires (34) that Ic be equated to the ionization potential of methyl radical, 9.84 eV. This change, however, does not affect the values of transition energies. [Pg.338]

Nucleophilic Trapping of Radical Cations. To investigate some of the properties of Mh radical cations these intermediates have been generated in two one-electron oxidant systems. The first contains iodine as oxidant and pyridine as nucleophile and solvent (8-10), while the second contains Mn(0Ac) in acetic acid (10,11). Studies with a number of PAH indicate that the formation of pyridinium-PAH or acetoxy-PAH by one-electron oxidation with Mn(0Ac)3 or iodine, respectively, is related to the ionization potential (IP) of the PAH. For PAH with relatively high IP, such as phenanthrene, chrysene, 5-methyl chrysene and dibenz[a,h]anthracene, no reaction occurs with these two oxidant systems. Another important factor influencing the specific reactivity of PAH radical cations with nucleophiles is localization of the positive charge at one or a few carbon atoms in the radical cation. [Pg.294]

In piperidine the electron lone-pair can occupy either an axial or an equatorial position in 1-methylpiperidine the axial orientation (lb) is favoured by 99 1 over the equatorial (la). PE spectra and ab initio calculations on methylpiperidines indicate that axial 2-methyl substituents lower the amine lone-pair ionization potential by about 0.26 eV, while equatorial 2-methyl substituents as well as methyl groups on carbon atoms 3 and 4 lower the lone-pair IP by less than 0.1 eV63. This establishes the mechanism of stabilization of the amine radical cation as hyperconjugative electron release, which is larger for CC bonds than for CH bonds. The anti-periplanar orientation of the nitrogen lone-pair and the vicinal C—Me bond (lc) is much more favourable for this type of interaction than the synclinal orientation (Id). [Pg.169]

Fia. 21. Improvement in agreement between calculated and observed ionization potentials for simple w systems as between values derived on the simple H.M.O. basis (left-hand end of arrows) and those derived using the oj technique (right-hand end of arrows). See text. 1, Methyl 2, Allyl 3, Pentadienyl 4, Benzyl 6, Ethylene 6, Butadiene 7, Benzene 8, Styrene 9, Naphthalene 10, Fhenanthrene. [Pg.66]

Fio. 22. Dependence of HCl valency vibration on the ionization potential of methyl-benzenes, according to measurements of Cook (1956). [Pg.260]

The results of the alkylbenzene series may also be readily explained in terms of ir complex adsorption. In this series, the molecular orbital symmetry of individual members remains constant while the ionization potential, electron affinity, and steric factors vary. Increased methyl substitution lowers the ionization potential and consequently favors IT complex adsorption. However, this is opposed by the accompanying increase in steric hindrance as a result of multiple methyl substitution, and decrease in electron affinity (36). From previous data (Tables II and III) it appears that steric hindrance and the decreased electron affinity supersede the advantageous effects of a decreased ionization potential. The results of Rader and Smith, when interpreted in terms of tt complex adsorption, show clearly the effects of steric hindrance, in that relative adsorption strength decreases with increasing size, number, and symmetry of substituents. [Pg.112]

An upsurge of interest in the N-methylborazines in the early 1970 s was coupled with a convenient method of synthesis and purification for these compounds The photoelectron spectrum of N-trimethylborazine has been reported. Table 6 summarizes the theoretical and experimental data comparing the location of the molecular orbitals of N-trimethylborazine with those of borazine. The HOMO is predicted and observed to be an e" (w) orbital as in borazine The methyl substitution on nitrogen destabilizes the e" and the a2 jr-orbitals, but does not signiBcantly effect the e (a) orbital. The result is a lowering of the ionization potential for electrons in the two TT-orbitals. This effect, predicted in the dieoretical calculations, was also verified experimentally. [Pg.20]

The lone-pair peak separation of 1.04 eV, measured by means of photoelectron spectroscopy, was indicative of the presence of the rrans-fused conformation with an axial methyl group for l-methylperhydropyrido[l,2-fcjpyridazine (18) (79JA1874). Ionization potentials and the oxidation potential of l-methylperhydropyrido[l,2-h]pyridazine have been determined (79IJ45, 79JA1874 84JOC1891). [Pg.93]

The presence of l-methyl-5-methylthiotriazole (67c) could not be demonstrated since its bands would be masked by those of its isomer (67b). The ionization potentials are shown in Table 11. [Pg.23]

Some time ago, an allyl-like radical was observed in irradiated crystals of 5 -dCMP [26]. This radical was thought to be a sugar radical, although no likely scheme was proposed for its formation. It now appears that this radical is formed on 5-methyl cytosine impurities in these crystals [27]. This radical forms by deprotonation at the methyl group of the cytosine cation, 5meCyt(Me—H) , and may have important consequences in the radiation chemistry of DNA since the ionization potential of 5-methyl cytosine is lower than that of either cytosine or thymine. [Pg.441]


See other pages where Methyl ionization potential is mentioned: [Pg.635]    [Pg.1049]    [Pg.208]    [Pg.1049]    [Pg.191]    [Pg.175]    [Pg.182]    [Pg.18]    [Pg.303]    [Pg.233]    [Pg.293]    [Pg.220]    [Pg.115]    [Pg.132]    [Pg.706]    [Pg.595]    [Pg.389]    [Pg.192]    [Pg.702]    [Pg.711]    [Pg.272]    [Pg.300]    [Pg.260]    [Pg.269]    [Pg.278]    [Pg.112]    [Pg.174]    [Pg.29]    [Pg.294]    [Pg.23]    [Pg.634]    [Pg.302]    [Pg.140]    [Pg.5]    [Pg.1230]   
See also in sourсe #XX -- [ Pg.175 , Pg.177 ]




SEARCH



Ionization potential

Ionization potential methyl acetate

Ionization potential methyl acrylate

Ionization potentials reactions, methyl

© 2024 chempedia.info