Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Method development sample solutions

Determination of Na " and Na" ions in raw cosmetic materials was conducted with the developed method of flame photometry. A necessity of development of method of samples preparation arose up in the work process, as this spicily-aromatic raw material contained pectin in amount 0.1-0.5% and that prevented preparation of samples by standard method of extracts dilution and required incineration of analyzed sample, time of analysis was increased in 60 times. It was established that CaCl, solution with the concentration 0,4 % caused destmctions of the carbopol gel. It was established that the addition of 0,1% CaCl, and 0,1% NaCl salts solutions into the system intensified the effect of negative action of these salts onto the gel stmcture and the gel destmcted completely. [Pg.375]

The contemporary chromatograph used for analytical purposes is a very complex instrument that may operate at pressures up to 10,000 p.s.i.and provide flow rates that range from a few microliters per minute to 10 or 20 ml/minute. Solutes can be detected easily at concentration levels as low as lxlO-9 g/ml and a complete analysis can be carried out on a few micrograms of sample in a few minutes. The range of liquid chromatographs that is available extends from the relatively simple and inexpensive instrument, suitable for the majority of routine analyses, to the very elaborate and expensive machines that are more appropriate for analytical method development. [Pg.123]

The final choice will have to be made during method development and/or analysis of the real samples, e.g. one of the ions selected may provide superb data from standard solutions but show a high matrix background on all or, perversely, on only a small number of samples, which will preclude its/their use. [Pg.72]

HS-GC methods have equally been used for chromatographic analysis of residual volatile substances in PS [219]. In particular, various methods have been described for the determination of styrene monomer in PS by solution headspace analysis [204,220]. Residual styrene monomer in PS granules can be determined in about 100 min in DMF solution using n-butylbenzene as an internal standard for this monomer solid headspace sampling is considerably less suitable as over 20 h are required to reach equilibrium [204]. Shanks [221] has determined residual styrene and butadiene in polymers with an analytical sensitivity of 0.05 to 5 ppm by SHS analysis of polymer solutions. The method development for determination of residual styrene monomer in PS samples and of residual solvent (toluene) in a printed laminated plastic film by HS-GC was illustrated [207], Less volatile monomers such as styrene (b.p. 145 °C) and 2-ethylhexyl acrylate (b.p. 214 °C) may not be determined using headspace techniques with the same sensitivities realised for more volatile monomers. Steichen [216] has reported a 600-fold increase in headspace sensitivity for the analysis of residual 2-ethylhexyl acrylate by adding water to the solution in dimethylacetamide. [Pg.205]

In recent years, a class of methods has been developed for molecular dynamics simulations to be performed with an external pH parameter, like temperature or pressure [18, 43, 44, 70], These methods treat the solution as an infinite proton bath, and are thus referred to as constant pH molecular dynamics (PHMD). In PHMD, conformational dynamics of a protein is sampled simultaneously with the protonation states as a function of pH. As a result, protein dielectric response to the... [Pg.267]

For the majority of applications, the sample is taken into solution and introduced into the plasma as an aerosol in the argon stream. The sample solution is pumped by a peristaltic pump at a fixed rate and converted into an aerosol by a nebulizer (see atomic absorption spectrometry). Various designs of nebulizer are in use, each having strengths and weaknesses. The reader is directed to the more specialist texts for a detailed consideration of nebulizers. There is an obvious attraction in being able to handle a solid directly, and sample volatilization methods using electric spark ablation, laser ablation and electrothermal volatilization have also been developed. [Pg.302]

The optimal reaction conditions for the generation of the hydrides can be quite different for the various elements. The type of acid and its concentration in the sample solution often have a marked effect on sensitivity. Additional complications arise because many of the hydrideforming elements exist in two oxidation states which are not equally amenable to borohydride reduction. For example, potassium iodide is often used to pre-reduce AsV and SbV to the 3+ oxidation state for maximum sensitivity, but this can also cause reduction of Se IV to elemental selenium from which no hydride is formed. For this and other reasons Thompson et al. [132] found it necessary to develop a separate procedure for the determination of selenium in soils and sediments although arsenic, antimony and bismuth could be determined simultaneously [133]. A method for simultaneous determination of As III, Sb III and Se IV has been reported in which the problem of reduction of Se IV to Se O by potassium iodide was circumvented by adding the potassium iodide after the addition of sodium borohydride [134], Goulden et al. [123] have reported the simultaneous determination of arsenic, antimony, selenium, tin and bismuth, but it appears that in this case the generation of arsine and stibene occurs from the 5+ oxidation state. [Pg.356]

This case study illustrates the SP method development of an assay method for a controlled-release analgesic tablet with a single API. Certain considerations were taken into account. First, the analyte within the tablet matrice core had to be extracted quantitatively. Second, the analyte was diluted into a final solution that was compatible with the HPLC mobile phase. Third, short SP time was required (i.e., 30 min) to maximize productivity of the work scheme for processing a large number of samples. [Pg.135]

As the approach detailed above can result in the generation of numerous samples to be screened, it is frequently possible to combine some solutions into a set of selectivity solutions for some method development activities. However, there is also merit in analyzing the individual solutions separately to obtain information on degradation pathways and DS impurities that can facilitate the understanding of drug chemistry. [Pg.150]

In developing a commercially viable method, the stability of samples, standards, and reagents used for the HPLC method must be considered. For the stability of standard solutions and reagents, long-term stability of up to weeks is desirable. For the stability of sample solutions, a minimum of 3 days is ideal. Generally, the reagents for standard and sample preparation should be the same or very similar to the mobile phase composition. [Pg.352]


See other pages where Method development sample solutions is mentioned: [Pg.159]    [Pg.159]    [Pg.159]    [Pg.43]    [Pg.316]    [Pg.174]    [Pg.283]    [Pg.230]    [Pg.674]    [Pg.278]    [Pg.359]    [Pg.289]    [Pg.83]    [Pg.341]    [Pg.525]    [Pg.872]    [Pg.214]    [Pg.68]    [Pg.194]    [Pg.202]    [Pg.244]    [Pg.136]    [Pg.128]    [Pg.322]    [Pg.459]    [Pg.331]    [Pg.32]    [Pg.154]    [Pg.125]    [Pg.149]    [Pg.150]    [Pg.166]    [Pg.348]    [Pg.384]    [Pg.388]    [Pg.403]    [Pg.419]    [Pg.435]    [Pg.46]    [Pg.270]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Developer solutions

Method development

Method development sampling

Sample methods

Samples Development

Samples method development

Sampling methods

Solution method

Solution sampling

© 2024 chempedia.info