Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol sensing

The bond strength of the oxygen at the surface near sites is an important factor for the sensing properties that has already been proposed by Arakawa et al. for methanol sensing activity of different rare-earth perovskites.52 The binding energy AH(M-O) is calculated by ... [Pg.289]

For methanol sensing, a simple vapor generation and fluorescence detection system was utilized. A diagram of this system is presented in Fig. 2. The generation of methanol vapor was accomplished by flowing a carrier gas, in this case dry air, through a 20 ml... [Pg.455]

A free radical (often simply called a radical) may be defined as a species that contains one or more unpaired electrons. Note that this definition includes certain stable inorganic molecules such as NO and NO2, as well as many individual atoms, such as Na and Cl. As with carbocations and carbanions, simple alkyl radicals are very reactive. Their lifetimes are extremely short in solution, but they can be kept for relatively long periods frozen within the crystal lattices of other molecules. Many spectral measurements have been made on radicals trapped in this manner. Even under these conditions, the methyl radical decomposes with a half-life of 10-15 min in a methanol lattice at 77 K. Since the lifetime of a radical depends not only on its inherent stabihty, but also on the conditions under which it is generated, the terms persistent and stable are usually used for the different senses. A stable radical is inherently stable a persistent radical has a relatively long lifetime under the conditions at which it is generated, though it may not be very stable. [Pg.238]

The recently reported (757) conversion of 5-pyrazolones directly to a,j8-acetylenic esters by treatment with TTN in methanol appears to be an example of thallation of a heterocyclic enamine the suggested mechanism involves initial electrophilic thallation of the 3-pyrazolin-5-one tautomer of the 5-pyrazolone to give an intermediate organothallium compound which undergoes a subsequent oxidation by a second equivalent of TTN to give a diazacyclopentadienone. Solvolysis by methanol, with concomitant elimination of nitrogen and thallium(I), yields the a,)S-acetylenic ester in excellent (78-95%) yield (Scheme 35). Since 5-pyrazolones may be prepared in quantitative yield by the reaction of /3-keto esters with hydrazine (168), this conversion represents in a formal sense the dehydration of /3-keto esters. In fact, the direct conversion of /3-keto esters to a,jS-acetylenic esters without isolation of the intermediate 5-pyrazolones can be achieved by treatment in methanol solution first with hydrazine and then with TTN. [Pg.200]

The current efficiencies for the different reaction products CO2, formaldehyde, and formic acid obtained upon potential-step methanol oxidation are plotted in Fig. 13.7d. The CO2 current efficiency (solid line) is characterized by an initial spike of up to about 70% directly after the potential step, followed by a rapid decay to about 54%, where it remains for the rest of the measurement. The initial spike appearing in the calculated current efficiency for CO2 formation can be at least partly explained by a similar artifact as discussed for formaldehyde oxidation before, caused by the fact that oxidation of the pre-formed COacurrent efficiency. The current efficiency for formic acid oxidation steps to a value of about 10% at the initial period of the measurement, and then decreases gradually to about 5% at the end of the measurement. Finally, the current efficiency for formaldehyde formation, which was not measured directly, but calculated from the difference between total faradaic current and partial reaction currents for CO2 and formic acid formation, shows an apparently slower increase during the initial phase and then remains about constant (final value about 40%). The imitial increase is at least partly caused by the same artifact as discussed above for CO2 formation, only in the opposite sense. [Pg.441]

Lewis Bases. A variety of other ligands have been studied, but with only a few of the transition metals. There is still a lot of room for scoping work in this direction. Other reactant systems reported are ammoni a(2e), methanol (3h), and hydrogen sulfide(3b) with iron, and benzene with tungsten (Tf) and plati num(3a). In a qualitative sense all of these reactions appear to occur at, or near gas kinetic rates without distinct size selectivity. The ammonia chemisorbs on each collision with no size selective behavior. These complexes have lower ionization potential indicative of the donor type ligands. Saturation studies have indicated a variety of absorption sites on a single size cluster(51). [Pg.60]

Smooth and uniform polymer surface after vacuum plays a key role to ensure good OFRR sensing performance. We have observed in experiments that toluene after vacuum is prone to leave a number of cavities of a few micrometers in diameter on the surface. These cavities will induce additional scattering loss for the WGMs in the OFRR, which greatly degrade the g-factor, and hence the detection limit of the OFRR vapor sensor. Moreover, these small cavities have different adsorption characteristics compared to smooth polymer surface. Vapor molecules may be retained for a longer time at the cavity, which increases the response time and recovery time. Acetone and methanol are found to be better candidates for solvents because they usually leave uniform and smooth surface after vacuum. [Pg.133]

Microwave spectroscopy is probably the ultimate tool to study small alcohol clusters in vacuum isolation. With the help of isotope substitution and auxiliary quantum chemical calculations, it provides structural insights and quantitative bond parameters for alcohol clusters [117, 143], The methyl rotors that are omnipresent in organic alcohols complicate the analysis, so that not many alcohol clusters have been studied with this technique and its higher-frequency variants. The studied systems include methanol dimer [143], ethanol dimer [91], butan-2-ol dimer [117], and mixed dimers such as propylene oxide with ethanol [144]. The study of alcohol monomers with intramolecular hydrogen-bond-like interactions [102, 110, 129, 145 147] must be mentioned in this context. In a broader sense, this also applies to isolated ra-alkanols, where a weak Cy H O hydrogen bond stabilizes certain conformations [69,102]. Microwave techniques can also be used to unravel the information contained in the IR spectrum of clusters with high sensitivity [148], Furthermore, high-resolution UV spectroscopy can provide accurate structural information in suitable systems [149, 150] and thus complement microwave spectroscopy. [Pg.18]

We then designed model studies by adsorbing cinchonidine from CCU solution onto a polycrystalline platinum disk, and then rinsing the platinum surface with a solvent. The fate of the adsorbed cinchonidine was monitored by reflection-absorption infrared spectroscopy (RAIRS) that probes the adsorbed cinchonidine on the surface. By trying 54 different solvents, we are able to identify two broad trends (Figure 17) [66]. For the first trend, the cinchonidine initially adsorbed at the CCR-Pt interface is not easily removed by the second solvent such as cyclohexane, n-pentane, n-hexane, carbon tetrachloride, carbon disulfide, toluene, benzene, ethyl ether, chlorobenzene, and formamide. For the second trend, the initially established adsorption-desorption equilibrium at the CCR-Pt interface is obviously perturbed by flushing the system with another solvent such as dichloromethane, ethyl acetate, methanol, ethanol, and acetic acid. These trends can already explain the above-mentioned observations made by catalysis researchers, in the sense that the perturbation of initially established adsorption-desorption equilibrium is related to the nature of the solvent. [Pg.255]


See other pages where Methanol sensing is mentioned: [Pg.173]    [Pg.458]    [Pg.316]    [Pg.32]    [Pg.95]    [Pg.173]    [Pg.458]    [Pg.316]    [Pg.32]    [Pg.95]    [Pg.346]    [Pg.310]    [Pg.219]    [Pg.668]    [Pg.273]    [Pg.214]    [Pg.217]    [Pg.284]    [Pg.284]    [Pg.160]    [Pg.198]    [Pg.611]    [Pg.716]    [Pg.270]    [Pg.378]    [Pg.571]    [Pg.218]    [Pg.165]    [Pg.109]    [Pg.366]    [Pg.139]    [Pg.10]    [Pg.366]    [Pg.369]    [Pg.617]    [Pg.327]    [Pg.5]    [Pg.6]    [Pg.443]    [Pg.518]    [Pg.882]    [Pg.168]    [Pg.301]    [Pg.1268]    [Pg.222]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



© 2024 chempedia.info