Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methane oxidation reaction mechanism

There has been a great deal of research on the combustion of small hydrocarbons, including nitrogen-cycle chemistry leading to nitric-oxide formation and abatement [138]. There are a number of methane-air reaction mechanisms that have been developed and validated [274,276,278], the most popular one being GRI-Mech [366]. There is also active research on the kinetics of large hydrocarbon combustion [81,88,171,246,328-330,426]. [Pg.4]

Derivations of equation (4) involve a microscopic viewpoint. The reasoning, in its simplest form, is that the reaction rate is proportional to the collision rate between appropriate molecules, and the collision rate is proportional to the product of the concentrations. Implicit in this picture is the idea that equation (4) will be valid only if equation (1) represents a process that actually occurs at the molecular level. Equation (1) must be an elementary reaction step, with v[ molecules of each molecular species i interacting in the microscopic process equation (4) will not be meaningful if equation (1) is the overall methane-oxidation reaction CH -1- 2O2 CO2 -1- 2H2O, for example. Thus, there are two basic problems in chemical kinetics the first is to determine the reaction mechanism, that is, to find the elementary steps by which the given reaction proceeds, and the second is to determine the specific rate constant k for each of these steps. These two problems are discussed in Sections B,2 and B.3, respectively. [Pg.555]

Methane oxidations occur only by intermediate and high temperature mechanisms and have been reported not to support cool flames (104,105). However, others have reported that cool flames do occur in methane oxidation, even at temperatures >400 ° C (93,94,106,107). Since methyl radicals caimot participate in reactions 23 or 24, some other mechanism must be operative to achieve the quenching observed in methane cool flames. It has been proposed that the interaction of formaldehyde and its products with radicals decreases their concentrations and inhibits the whole oxidation process (93). [Pg.340]

Flame or Partial Combustion Processes. In the combustion or flame processes, the necessary energy is imparted to the feedstock by the partial combustion of the hydrocarbon feed (one-stage process), or by the combustion of residual gas, or any other suitable fuel, and subsequent injection of the cracking stock into the hot combustion gases (two-stage process). A detailed discussion of the kinetics for the pyrolysis of methane for the production of acetylene by partial oxidation, and some conclusions as to reaction mechanism have been given (12). [Pg.386]

The lithium oxide-promoted barium oxide also functions as a catalyst for the methane coupling reaction, but the mechanism is not clearly understood at the present time. The only comment that might be offered here is that the presence of ions on the surface of this material might etdrance the formation of methyl radicals drrough the formation of hydroxyl groups thus... [Pg.142]

However, many reactions of commercial interest have chemistry, mechanical, or system requirements that preclude the use of cross-flow reactors. Processes cannot use a cross-flow orientation primarily because of high temperatures and the need to internally recuperate heat such as steam methane reforming (SMR) [12, 13] and oxidation reactions [14]. Counter- and coflow devices require a micromanifold to dehver sufficiently uniform flow to each of the many parallel channels. [Pg.242]

For illustration, we consider a simplified treatment of methane oxidative coupling in which ethane (desired product) and CO, (undesired) are produced (Mims et al., 1995). This is an example of the effort (so far not commercially feasible) to convert CH, to products for use in chemical syntheses (so-called Q chemistry ). In this illustration, both C Hg and CO, are stable primary products (Section 5.6.2). Both arise from a common intermediate, CH, which is produced from CH4 by reaction with an oxidative agent, MO. Here, MO is treated as another gas-phase molecule, although in practice it is a solid. The reaction may be represented by parallel steps as in Figure 7.1(a), but a mechanism for it is better represented as in Figure 7.1(b). [Pg.164]

In this chapter, we will study the elementary reaction steps of these mechanisms focusing primarily on the anthraphos systems. This chapter begins with a description of the impact of different methods (coupled cluster, configuration interaction and various DFT functionals), different basis sets, and phosphine substituents on the oxidative addition of methane to a related Ir system, [CpIr(III)(PH3)Me]+. Then, it compares the elementary reaction steps, including the effect of reaction conditions such as temperature, hydrogen pressure, alkane and alkene concentration, phosphine substituents and alternative metals (Rh). Finally, it considers how these elementary steps constitute the reaction mechanisms. Additional computational details are provided at the end of the chapter. [Pg.323]

The history of the development of methane conversion to synthesis gas is summarized as an introduction to the partial oxidation of methane, which is reviewed with emphasis on hot spots in reactors, major developments in the reduction of O2 separation costs, and reaction mechanisms. The various catalysts employed in CO2 reforming are examined, with emphasis on inhibition of carbon deposition. 2004 Elsevier Inc. [Pg.320]

Using a temperature-programmed surface reaction (TPSR) technique, Li et al. (154) showed that this complete oxidation of methane took place on the NiO catalyst during the CHfOi reaction. Weng et al. (145) used in situ microprobe Raman and in situ time-resolved IR spectroscopies to obtain a relationship between the state of the catalyst and the reaction mechanism. These authors showed that RuC>2 in the Ru/SiC>2 catalyst formed easily at 873 K in the presence of a CH4/02/Ar (2/1/45, molar) mixture and that the dominant pathway to synthesis gas was by the sequence of total oxidation of CH4 followed by reforming of the unconverted CH4 by C02 and H20. Thus, these results indicate that the oxidation of methane takes place principally by the combustion mechanism on the oxidized form of this catalyst. [Pg.342]

To illustrate the utility of the bimolecular QRRK theory, consider the recombination of CHjCl and CHjCl radicals at temperatures in the range 800-l,5(X) C. This recombination process is important in the chlorine-catalyzed oxidative pyrolytic (CCOP) conversion of methane into more valuable C2 products, and it has been studied recently by Karra and Senkan (1988a). The following composite reaction mechanism represents the complex process ... [Pg.170]

Figures 12.3 and 12.3c show mean velocity (Fig. 12.36) and mean temperature (Fig. 12.3c) fields under bluff-body stabilized combustion of stoichiometric methane-air mixture at inlet velocity 10 m/s, and ABC of Eq. (12.19) at the combustor outlet. Functions Wj, Wij, and W2j in Eq. (12.1) were obtained by solving the problem of laminar flame propagation with the detailed reaction mechanism [31] of Ci-C2-hydrocarbon oxidation (35 species, 280 reactions) including CH4 oxidation chemistry. The PDF of Eq. (12.4) was used in this calculation. Figures 12.3 and 12.3c show mean velocity (Fig. 12.36) and mean temperature (Fig. 12.3c) fields under bluff-body stabilized combustion of stoichiometric methane-air mixture at inlet velocity 10 m/s, and ABC of Eq. (12.19) at the combustor outlet. Functions Wj, Wij, and W2j in Eq. (12.1) were obtained by solving the problem of laminar flame propagation with the detailed reaction mechanism [31] of Ci-C2-hydrocarbon oxidation (35 species, 280 reactions) including CH4 oxidation chemistry. The PDF of Eq. (12.4) was used in this calculation.
Notably, the Gas Research Institute s mechanism (GRI-MECH) for methane combustion is well-established, drawing on research from several groups over several decades to define and calibrate kinetic and thermodynamic data for each elementary reaction step. Additional mechanisms" for methane oxidation are also available and updated periodically to include the most recent data. [Pg.91]

The difference in H2 selectivity between Pt and Rh can be explained by the relative instability of the OH species on Rh surfaces. For the H2-O2-H2O reaction system on both and Rh, the elementary reaction steps have been identified and reaction rate parameters have been determined using laser induced fluorescence (LIF) to monitor the formation of OH radicals during hydrogen oxidation and water decomposition at high surface temperatures. These results have been fit to a model based on the mechanism (22). From these LIF experiments, it has been demonstrated that the formation of OH by reaction 10b is much less favorable on Rh than on Pt. This explains why Rh catalysts give significantly higher H2 selectivities than Pt catalysts in our methane oxidation experiments. [Pg.424]

Methane oxidation is among the more widely studied combustion reactions. Based largely on the work of Semenov et al. (6) the following summary mechanism has recently been proposed by a group of knowledgeable authors (2) ... [Pg.391]


See other pages where Methane oxidation reaction mechanism is mentioned: [Pg.690]    [Pg.19]    [Pg.20]    [Pg.16]    [Pg.286]    [Pg.153]    [Pg.514]    [Pg.346]    [Pg.453]    [Pg.493]    [Pg.262]    [Pg.105]    [Pg.113]    [Pg.143]    [Pg.256]    [Pg.256]    [Pg.257]    [Pg.659]    [Pg.83]    [Pg.616]    [Pg.189]    [Pg.81]    [Pg.10]    [Pg.44]    [Pg.48]    [Pg.362]    [Pg.425]    [Pg.112]    [Pg.107]    [Pg.21]    [Pg.21]    [Pg.47]   
See also in sourсe #XX -- [ Pg.107 , Pg.285 , Pg.286 , Pg.287 ]




SEARCH



Methanal oxidation

Methanation mechanism

Methane reaction

Oxidation reaction mechanisms

Oxidative methane

Reaction mechanism Methanation

Reaction methane oxidation

Reactions methanation

© 2024 chempedia.info