Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanation process description

A chemical company is considering the production of 1000 tons/day of high-purity anhydrous ammonia. The method selected is a high-pressure steam-methane reforming process. The process description is as follows ... [Pg.832]

Carbon tetrachloride can also be made by the direct chlorination of methane (see process description and flow sheet on p. 299) and recycling the unreacted and partially reacted products. [Pg.240]

Substitution involves the replacement of one Ugand (or substituent) on carbon by another. The replacement of hydrogen in methane (CH4) by chlorine in a process (descriptively) called a free radical substitution is shown in Equation II-N. [Pg.288]

The forty-eighth volume of Advances in Catalysis includes a description of a new and increasingly well understood class of catalysts (titanosilicates), a review of transmission electron microscopy and related methods applied to catalyst characterization, and summaries of the chemistry and processes of isobutane-alkene alkylation and partial oxidation and C02 reforming of methane to synthesis gas. [Pg.16]

A detailed description of the laser-excited vibrational fluorescence method and further results on relaxation processes in methane, including V - R transfer, have been given in reference In this paper, too, a comparison is made between the experimentally obtained F - F rates and calculations for the repulsive intermolecular potential responsible for these transitions. [Pg.28]

A second workshop, Catalysis for Sustainable Energy Production , was held in Sesto Fiorentino (Florence, Italy) from 29 November to 1 December 2006. The structure and approach of this workshop were similar to those of the first, but the focus was on (i) fuel cells, (ii) hydrogen and methane storage and (iii) H2 production from old to new processes, including those using renewable energy sources. The present book is based on this second workshop and reports a series of invited contributions which provide both the state-of-the-art and frontier research in the field. Many contributions are from industry, but authors were also asked to focus their description on the identification of priority topics and problems. The active discussions during the workshop are reflected in the various chapters of this book. [Pg.467]

It is clear that proper description of the energetics of homolytic bond dissociation requires models that account for electron correlation. Are correlated models also needed for accurate descriptions of relative homolytic bond dissociation energies where the relevant reactions are expressed as isodesmic processes A single example suggests that they may not be. Table 6-15 compares calculated and measured CH bond dissociation energies in hydrocarbons, R-H, relative to the CH bond energy in methane as a standard ... [Pg.230]

A cell model is presented for the description of the separation of two-component gas mixtures by pressure swing adsorption processes. Local equilibrium is assumed with linear, independent isotherms. The model is used to determine the light gas enrichment and recovery performance of a single-column recovery process and a two-column recovery and purification process. The results are discussed in general terms and with reference to the separation of helium and methane. [Pg.198]

Several processes are available for the production of the additional hydrogen that is necessary for the various heavy feedstock hydroprocessing sequences that have been outlined elsewhere (Chapters 7 and 9), and it is the purpose of the present section to present a general description of these processes. In general, most of the external hydrogen is manufactured by steam-methane reforming or by oxidation processes. Other processes such as ammonia dissociation, steam-... [Pg.401]

The outside tubeskin temperature was taken to be identical to that generated in the previous simulation. The input data were also identical. Radial process temperature profiles are given in Figure 7. The ATg between the bed centerline and the wall amounts to 33°C, which is not excessive and permits the radially averaged temperature to be accurately simulated by means of the one dimensional model with "equivalent" heat transfer parameters, as discussed above. The methane conversion at the wall never differed more them 2% absolute from that in the centerline of the bed. The more detailed description which is possible by the two dimensional model would only be required if thermodynamic s predict possible carbon formation, and therefore catalyst deactivation, at locations different from those simulated by the one dimensional model. [Pg.195]

The results show that the specificities of catalyst deactivation and it s kinetic description are in closed connection with reaction kinetics of main process and they form a common kinetic model. The kinetic nature of promotor action in platinum catalysts side by side with other physicochemical research follows from this studies as well. It is concern the increase of slow step rate, the decrease of side processes (including coke formation) rate and the acceleration of coke transformation into methane owing to the increase of hydrogen contents in coke. The obtained data can be united by common kinetic model.lt is desirable to solve some problems in describing the catalyst deactivation such as the consideration of coke distribution between surfaces of metal, promoter and the carrier in the course of reactions, diffusion effects etc,. [Pg.548]

In general, the orbitals in this method are expanded as linear combinations of a basis set of Slater functions in the same spirit as in the LCAO-MO-SCF method. However, in the present case the orbitals are essentially localized, and a description such as equation (67) is clearly equivalent to a linear combination of a great many VB structures, both covalent and ionic. Thus, in the case of methane this should provide a very good description of the ground state, particularly of the potential surfaces for such processes as... [Pg.89]

Description Natural gas or another hydrocarbon feedstock is compressed (if required), desulfurized, mixed with steam and then converted into synthesis gas. The reforming section comprises a prereformer (optional, but gives particular benefits when the feedstock is higher hydrocarbons or naphtha), a fired tubular reformer and a secondary reformer, where process air is added. The amount of air is adjusted to obtain an H2/N2 ratio of 3.0 as required by the ammonia synthesis reaction. The tubular steam reformer is Topsoe s proprietary side-wall-fired design. After the reforming section, the synthesis gas undergoes high- and low-temperature shift conversion, carbon dioxide removal and methanation. [Pg.10]

Description The gas feedstock is compressed (if required), desulfurized (1) and process steam is added. Process steam used is a combination of steam from the process condensate stripper and superheated medium pressure steam from the header. The mixture of natural gas and steam is preheated, prereformed (2) and sent to the tubular reformer (3). The prereformer uses waste heat from the flue-gas section of the tubular reformer for the reforming reaction, thus reducing the total load on the tubular reformer. Due to high outlet temperature, exit gas from the tubular reformer has a low concentration of methane, which is an inert in the synthesis. The synthesis gas obtainable with this technology typically contains surplus hydrogen, which will be used as fuel in the reformer furnace. If C02 is available, the synthesis gas composition can be adjusted, hereby minimizing the hydrogen surplus. Carbon dioxide can preferably be added downstream of the prereformer. [Pg.97]

Description In the direct oxidation process, ethylene and oxygen are mixed with recycle gas and passed through a multi-tubular catalytic reactor (1) to selectively produce EO. A special silver catalyst (high-selectivity catalyst) is used it has been improved significantly over the years. Methane is used as ballast gas. Heat generated by... [Pg.61]


See other pages where Methanation process description is mentioned: [Pg.132]    [Pg.132]    [Pg.39]    [Pg.45]    [Pg.831]    [Pg.95]    [Pg.208]    [Pg.1032]    [Pg.248]    [Pg.158]    [Pg.130]    [Pg.55]    [Pg.5]    [Pg.406]    [Pg.41]    [Pg.259]    [Pg.248]    [Pg.106]    [Pg.35]    [Pg.200]    [Pg.123]    [Pg.1]    [Pg.2]    [Pg.242]    [Pg.173]    [Pg.353]    [Pg.37]    [Pg.246]    [Pg.433]    [Pg.88]    [Pg.89]    [Pg.107]    [Pg.14]    [Pg.62]   


SEARCH



Methane description

Methane process

Process description

Steam Methane Reforming Process Description

© 2024 chempedia.info