Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals research proposal

Subsequently, Backvall and coworkers developed triple-catalysis systems to enable the use of dioxygen as the stoichiometric oxidant (Scheme 3) [30-32]. Macrocyclic metal complexes (Chart 1) serve as cocatalysts to mediate the dioxygen-coupled oxidation of hydroquinone. Polyoxometallates have also been used as cocatalysts [33]. The researchers propose that the cocatalyst/BQ systems are effective because certain thermodynamically favored redox reactions between reagents in solution (including the reaction of Pd° with O2) possess high kinetic barriers, and the cocatalytic mixture exhibits highly selective kinetic control for the redox couples shown in Scheme 3 [27]. [Pg.81]

Although logwood had been known for several hundred years, it did not achieve technical importance until it was discovered that it combined with metallic salts to give various colored lakes, of which the chrome lake was the most important (81). After an enormous amount of research, the present formulas for the dye components were proposed (82) and later substantiated (83). [Pg.400]

The conducted researches of complexing processes of noble metals on a sulfur-containing CMSG surface formed the basis for development of sorption-photometric, sorption-luminescent, soi ption-atomic-absoi ption, sorption-atomic-emission and sorption-nuclear-physic techniques of the analysis of noble metals in rocks, technological objects and environmental objects. Techniques of separation and detenuination of noble metals in various oxidation levels have been proposed in some cases. [Pg.259]

The kinetics of ethylene hydrogenation on small Pt crystallites has been studied by a number of researchers. The reaction rate is invariant with the size of the metal nanoparticle, and a structure-sensitive reaction according to the classification proposed by Boudart [39]. Hydrogenation of ethylene is directly proportional to the exposed surface area and is utilized as an additional characterization of Cl and NE catalysts. Ethylene hydrogenation reaction rates and kinetic parameters for the Cl catalyst series are summarized in Table 3. The turnover rate is 0.7 s for all particle sizes these rates are lower in some cases than those measured on other types of supported Pt catalysts [40]. The lower activity per surface... [Pg.156]

Attempts to determine how the activity of the catalyst (or the selectivity which is, in a rough approximation, the ratio of reaction rates) depends upon the metal particle size have been undertaken for many decades. In 1962, one of the most important figures in catalysis research, M. Boudart, proposed a definition for structure sensitivity [4,5]. A heterogeneously catalyzed reaction is considered to be structure sensitive if its rate, referred to the number of active sites and, thus, expressed as turnover-frequency (TOF), depends on the particle size of the active component or a specific crystallographic orientation of the exposed catalyst surface. Boudart later expanded this model proposing that structure sensitivity is related to the number of (metal surface) atoms to which a crucial reaction intermediate is bound [6]. [Pg.167]

The fine concept embodied in the proposal of CFPs as supports of nanostructured metal phases, experienced in fact an almost total inattention in the academic Catalysis community until the mid-nineties, when a few research groups started a systematic exploration of the field [9-12]. [Pg.201]

The elucidation of the structure of the phthalocyanines followed some pioneering research into the chemistry of the system by Linstead of Imperial College, University of London. The structure that we now recognise was first proposed from the results of analysis of a number of metal phthalocyanines, which provided the molecular formulae, and from an investigation of the products from degradation studies. Finally, Robertson confirmed the structure as a result of one of the classical applications of single crystal X-ray crystallography. [Pg.93]

The protocol involving NaOAc-HOAc at pH 5 was first proposed and used by Jackson (1958) to remove carbonates from calcareous soils to analyze soil cation exchange characteristics (Grossman and Millet, 1961). Other researchers used HOAc for the extraction of metals from sediments and soils (Nissenbaum, 1972 Mclaren and Crawford, 1973). Tessier et al. (1979) first used the NaOAc-HOAc solution at pH 5 to dissolve the carbonate fraction from sediments. Since then, the NaOAc-HOAc buffer has been widely used as a specific extractant for the carbonate phase in various media (Tessier et al., 1979 Hickey and Kittrick, 1984 Rapin et al., 1986 Mahan et al., 1987 Han et al., 1992 Clevenger, 1990 Banin et al., 1990). Despite its widespread use, this step is not free from difficulties, and further optimization is required in its application. Questions arise with regard to this step in the elemental extraction from noncalcareous soils, the dissolution capacity and dissolution rates imposed by the buffer at various pHs, and the possibility that different carbonate minerals may require different extraction protocols (Grossman and Millet, 1961 Tessier et al., 1979). [Pg.111]


See other pages where Metals research proposal is mentioned: [Pg.88]    [Pg.603]    [Pg.156]    [Pg.271]    [Pg.382]    [Pg.801]    [Pg.96]    [Pg.311]    [Pg.573]    [Pg.2083]    [Pg.4]    [Pg.348]    [Pg.541]    [Pg.240]    [Pg.304]    [Pg.348]    [Pg.38]    [Pg.347]    [Pg.430]    [Pg.115]    [Pg.209]    [Pg.1]    [Pg.37]    [Pg.47]    [Pg.226]    [Pg.52]    [Pg.158]    [Pg.44]    [Pg.80]    [Pg.272]    [Pg.419]    [Pg.241]    [Pg.443]    [Pg.52]    [Pg.92]    [Pg.177]    [Pg.69]    [Pg.291]    [Pg.310]    [Pg.115]    [Pg.198]    [Pg.85]    [Pg.19]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Metal research

Research proposal

© 2024 chempedia.info