Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals crystal forms

All isotopes of plutonium are radioactive. The two isotopes that have found the most uses are Pu-238 and Pu-239. Pu-238 is produced by bombarding U-238 with deuterons in a cyclotron, creating neptunium-238 and two free neutrons. Np-238 has a half-life of about two days, and through beta decay it transmutates into plutonium-238. There are six allotropic metallic crystal forms of plutonium. They all have differing chemical and physical properties. The alpha (a) aUotrope is the only one that exists at normal room temperatures and pressures. The alpha allotrope of metallic plutonium is a silvery color that becomes yellowish as it oxidizes in air. AH the other allotropic forms exist at high temperatures. [Pg.318]

Due to the nature of a metallic bond, it is relatively easy to introduce other elements into a metallic crystal, forming an alloy. An alloy is a mixture of elements that has metallic properties. Table 8-8 lists some commercially important alloys and their uses. A company that manufactures trophies probably would use which alloy listed in the table ... [Pg.230]

The role of nonsoluble impurities in a solidification process was considered in detail by Danilov et al. [60], Kazachkovskii and Danilov [60] have shown that microscopic cracks and imperfections on the surface of solid particles are of great importance. Metallic crystals formed by any way inside those cracks can be preserved with heating above the melting temperature of free crystals. This interpretation offers an explanation for the role of overheating in decreasing the activity of the formation of solidification sites and is supported by the majority of scientists. [Pg.139]

Boron fiber was first produced for commercial testing and use in 1964. The process by which it is produced makes boron fiber a structural composite in its own right. To make boron fiber, a very fine filament of the element tungsten is passed slowly through a sealed reaction chamber that contains an atmosphere of vaporized boron. Boron atoms deposit on the tungsten filament and build up in metallic crystal form to produce an enhanced fiber of desired dimensions. The filament then passes out of the reaction chamber to be wound on a spool. The boron fibers are very... [Pg.1759]

Shin, Y. (2002) New metal crystals, formed on a cotton assembly line, http //www, physorg.com/news94131885.html (accessed April 5, 2008). [Pg.557]

Pu (86 years) is formed from Np. Pu is separated by selective oxidation and solvent extraction. The metal is formed by reduction of PuF with calcium there are six crystal forms. Pu is used in nuclear weapons and reactors Pu is used as a nuclear power source (e.g. in space exploration). The ionizing radiation of plutonium can be a health hazard if the material is inhaled. [Pg.318]

Cobalt is a bluish silvery metal, exhibits ferromagnetism, and can exist in more than one crystal form it is used in alloys for special purposes. Chemically it is somewhat similar to iron when heated in air it gives the oxides C03O4 and CoO, but it is less readily attacked by dilute acids. With halogens, the cobalt(II) halides are formed, except that with fluorine the (III) fluoride, C0F3, is obtained. [Pg.401]

Transition metals readily form complexes, such as [Fe(CN)6], the ferrocyanide ion, Ni(CO)4, nickel tetracarbonyl, and [CuC ], the copper tetrachloride ion. MO theory applied to such species has tended to be developed independently. It is for this reason that the terms crystal field theory and ligand field theory have arisen which tend to disguise the fact that they are both aspects of MO theory. [Pg.270]

The small precious metal crystals can exist as metal crystallites or as metal oxides, both of which are catalytic (31). Rodium oxide has a tendency to react with alumina to form a soHd solution (35). To minimize this reaction, zirconia is used with the alumina (36). PubHcations regarding the TWC function of precious metals abound (37—42). [Pg.486]

An alternative, but to some extent complementaty approach to the structure of grain boundaries notes that as the tilt angle between the crystals forming the grain boundary increases, planes of lower atomic concentrations, the high index planes, such as (221), (331) and (115) in the face-centred strucmre, become parallel to the grain boundary. There is therefore a decrease in the number of metal-metal bonds at the boundary as the tilt angle increases. [Pg.37]

We saw in Chapter 6 that diffusive transformations (like the growth of metal crystals from the liquid during solidification, or the growth of one solid phase at the expense of another during a polymorphic change) involve a mechanism in which atoms are attached to the surfaces of the growing crystals. This means that diffusive transformations can only take place if crystals of the new phase are already present. But how do these crystals - or nuclei - form in the first place ... [Pg.68]

When a metal is cast, heat is conducted out of it through the walls of the mould. The mould walls are the coldest part of the system, so solidification starts there. In the Al-Si casting alloy, for example, primary (Al) crystals form on the mould wall and grow inwards. Their composition differs from that of the liquid it is purer, and contains less silicon. This means that silicon is rejected at the surface of the growing crystals, and the liquid grows richer in silicon that is why the liquid composition moves along the liquidus line. [Pg.352]

In addition to the above oxides M2O, M2O2, M4O6, MO2 and MO3 in which the alkali metal has the constant oxidation state 4-1, rubidium and caesium also form suboxides in which the formal oxidation state of the metal is considerably lower. Some of these intriguing compounds have been known since the turn of the century but only recently have their structures been elucidated by single crystal X-ray analysis. Partial oxidation of Rb at low temperatures gives RbeO which decomposes above —7.3°C to give copper-coloured metallic crystals of Rb902 ... [Pg.85]

Polonium is unique in being the only element known to crystallize in the simple cubic form (6 nearest neighbours at 335 pm). This a-form distorts at about 36° to a simple rhombohedral modification in which each Po also has 6 nearest neighbours at 335 pm. The precise temperature of the phase change is difficult to determine because of the self-heating of crystalline Po (p. 751) and it appears that both modifications can coexist from about 18° to 54°. Both are silvery-white metallic crystals with substantially higher electrical conductivity than Te. [Pg.753]

Pseudomorphism received methodical study from about 1905. A micro-section taken across the interface between a substrate and an electrodeposit shows the grain boundaries of the former continue across the interface into the deposit (Fig. 12.5). As grain boundaries are internal faces of metal crystals, when they continue into the deposit the latter is displaying the form of the substrate. Hothersall s 1935 paper contains numerous excellent illustrations with substrates and deposits chosen from six different metals, crystallising in different lattice systems and with different equilibrium spacing. Grain boundary continuation and hence pseudomorphism is evident despite the differences. [Pg.355]

Solids tend to crystallize in definite geometric forms that often can be seen by the naked eye. In ordinary table salt, cubic crystals of NaCl are clearly visible. Large, beautifully formed crystals of such minerals as fluorite, CaF2, are found in nature. It is possible to observe distinct crystal forms of many metals under a microscope. [Pg.245]

In Chapter 5 we identified metals by their high electrical conductivity. Now we can explain why they conduct electric current so well. It is because there are some electrons present in the crystal lattice that are extremely mobile. These conduction electrons move throughout the metallic crystal without specific attachment to particular atoms. The alkali elements form metals because of the ease of freeing one electron per atom to provide a reservoir of conduction electrons. The ease of freeing these conduction electrons derives from the stability of the residual, inert gas-like atoms. [Pg.94]

Table 21-IV shows some properties of the metals and their crystal forms. Since different crystal forms are involved in the series, trends in the properties are obscured. Figure 21-2 shows scale representations of the crystal structures of metallic beryllium, calcium, and barium. Table 21-IV shows some properties of the metals and their crystal forms. Since different crystal forms are involved in the series, trends in the properties are obscured. Figure 21-2 shows scale representations of the crystal structures of metallic beryllium, calcium, and barium.
Ni3C decomposition is included in this class on the basis of Doremieux s conclusion [669] that the slow step is the combination of carbon atoms on reactant surfaces. The reaction (543—613 K) obeyed first-order [eqn. (15)] kinetics. The rate was not significantly different in nitrogen and, unlike the hydrides and nitrides, the mobile lattice constituent was not volatilized but deposited as amorphous carbon. The mechanism suggested is that carbon diffuses from within the structure to a surface where combination occurs. When carbon concentration within the crystal has been decreased sufficiently, nuclei of nickel metal are formed and thereafter reaction proceeds through boundary displacement. [Pg.154]


See other pages where Metals crystal forms is mentioned: [Pg.700]    [Pg.78]    [Pg.700]    [Pg.78]    [Pg.23]    [Pg.271]    [Pg.164]    [Pg.335]    [Pg.338]    [Pg.213]    [Pg.182]    [Pg.538]    [Pg.152]    [Pg.124]    [Pg.328]    [Pg.450]    [Pg.572]    [Pg.91]    [Pg.228]    [Pg.257]    [Pg.161]    [Pg.162]    [Pg.262]    [Pg.274]    [Pg.359]    [Pg.494]    [Pg.160]    [Pg.166]    [Pg.67]    [Pg.72]    [Pg.359]    [Pg.194]    [Pg.367]   
See also in sourсe #XX -- [ Pg.312 ]




SEARCH



Crystals, forming

Metal crystals

Metallic crystal

© 2024 chempedia.info