Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals, catalytic effect

Metallic mat gas combustion occurs in operating conditions (i.e., premixed combustion with large excess air), which do not allow particle formahon. Flowever local conditions, far from the ideal ones, and metal catalytic effects could promote the undesirable formation of particulate matter and its emission in the atmosphere. [Pg.513]

Inspired by the many hydrolytically-active metallo enzymes encountered in nature, extensive studies have been performed on so-called metallo micelles. These investigations usually focus on mixed micelles of a common surfactant together with a special chelating surfactant that exhibits a high affinity for transition-metal ions. These aggregates can have remarkable catalytic effects on the hydrolysis of activated carboxylic acid esters, phosphate esters and amides. In these reactions the exact role of the metal ion is not clear and may vary from one system to another. However, there are strong indications that the major function of the metal ion is the coordination of hydroxide anion in the Stem region of the micelle where it is in the proximity of the micelle-bound substrate. The first report of catalysis of a hydrolysis reaction by me tall omi cell es stems from 1978. In the years that... [Pg.138]

When the operating temperature exceeds ca 93°C, the catalytic effects of metals become an important factor in promoting oil oxidation. Inhibitors that reduce this catalytic effect usually react with the surfaces of the metals to form protective coatings (see Metal surface treatments). Typical metal deactivators are the zinc dithiophosphates which also decompose hydroperoxides at temperatures above 93°C. Other metal deactivators include triazole and thiodiazole derivatives. Some copper salts intentionally put into lubricants counteract or reduce the catalytic effect of metals. [Pg.266]

Chelation itself is sometimes useful in directing the course of synthesis. This is called the template effect (37). The presence of a suitable metal ion facihtates the preparation of the crown ethers, porphyrins, and similar heteroatom macrocycHc compounds. Coordination of the heteroatoms about the metal orients the end groups of the reactants for ring closure. The product is the chelate from which the metal may be removed by a suitable method. In other catalytic effects, reactive centers may be brought into close proximity, charge or bond strain effects may be created, or electron transfers may be made possible. [Pg.393]

Refining and Isomerization. Whatever chlorination process is used, the cmde product is separated by distillation. In successive steps, residual butadiene is stripped for recycle, impurities boiling between butadiene (—5° C) and 3,4-dichloto-l-butene [760-23-6] (123°C) are separated and discarded, the 3,4 isomer is produced, and 1,4 isomers (140—150°C) are separated from higher boiling by-products. Distillation is typically carried out continuously at reduced pressure in corrosion-resistant columns. Ferrous materials are avoided because of catalytic effects of dissolved metal as well as unacceptable corrosion rates. Nickel is satisfactory as long as the process streams are kept extremely dry. [Pg.38]

The anion used to prepare the metal soap determines to a large extent whether it will meet fundamental requirements, which can be summed up as follows solubihty and stabiUty ia various kiads of vehicles (this excludes the use of short-chain acids) good storage stabiUty low viscosity, making handling the material easier optimal catalytic effect and best cost/performance ratio. [Pg.218]

Other polymers can be more troublesome. Poly(vinyl chloride) requires the incorporation of stabilisers and even so may discolour and give off hydrochloric acid, the latter having a corrosive effect on many metals. At the same time some metals have a catalytic effect on this polymer so that care has to be taken in the construction of barrels, screws and other metal parts liable to come into contact with the polymer. [Pg.163]

The poisoning effect of hydrogen when dissolved in palladium was for the first time properly described and interpreted by Couper and Eley (29) in 1950 in their study of the fundamental importance of the development of theories of catalysis on metals. The paper and the main results relate to the catalytic effect of an alloying of gold to palladium, on the parahydrogen conversion. This system was chosen as suitable for attempting to relate catalyst activity to the nature and occupation of the electronic energy... [Pg.254]

When these metal additives are delivered to the furnace, in whatever form suitable, they become oxides. In this active form, they exert a catalytic effect on the fuel combustion process. [Pg.680]

The major problem of these diazotizations is oxidation of the initial aminophenols by nitrous acid to the corresponding quinones. Easily oxidized amines, in particular aminonaphthols, are therefore commonly diazotized in a weakly acidic medium (pH 3, so-called neutral diazotization) or in the presence of zinc or copper salts. This process, which is due to Sandmeyer, is important in the manufacture of diazo components for metal complex dyes, in particular those derived from l-amino-2-naphthol-4-sulfonic acid. Kozlov and Volodarskii (1969) measured the rates of diazotization of l-amino-2-naphthol-4-sulfonic acid in the presence of one equivalent of 13 different sulfates, chlorides, and nitrates of di- and trivalent metal ions (Cu2+, Sn2+, Zn2+, Mg2+, Fe2 +, Fe3+, Al3+, etc.). The rates are first-order with respect to the added salts. The highest rate is that in the presence of Cu2+. The anions also have a catalytic effect (CuCl2 > Cu(N03)2 > CuS04). The mechanistic basis of this metal ion catalysis is not yet clear. [Pg.27]

CATALYTIC EFFECT OF METAL IONS ON THE REACTION OF 2,6-(MeO)2C6H3B(OH)2 WITH MALONATE BUFFERS AT 90 C AND pH 6.70628... [Pg.301]

Neutral PET hydrolysis usually takes place under high temperature and pressure in die presence of alkali metal acetate transesterification catalysts.28 It is diought diat the catalytic effect observed on the part of zinc salts is the result of electrolytic changes induced in die polymer-water interface during the hydrolysis process. The catalytic effect of zinc and sodium acetates is thought to be due to die destabilization of die polymer-water interface in the hydrolysis process. [Pg.543]

In all these cases the support has a dramatic effect on the activity and selectivity of the active phase. In classical terminology all these are Schwab effects of the second kind where an oxide affects the properties of a metal. Schwab effects of the first kind , where a metal affects the catalytic properties of a catalytic oxide, are less common although in the case of the Au/Sn02 oxidation catalysts9,10 it appears that most of the catalytic action takes place at the metal-oxide-gas three phase boundaries. [Pg.489]

Different results were obtained by Kobayashi and colleagues [76] performing the Diels-Alder reaction of 2,3-dimethyl butadiene with N-butylmaleimide in water in the presence of various dodecyl sulfate (DS) and dodecane sulfonate (DCS) LASCs [M(DS) M = Sc, Cu n = 3, 2 M(DCS) M = Sc, Yb, Mn, Co, Cu, Zn, Na, Ag n = 3,2, 1]. Unexpectedly, no acceleration was observed with respect to the reactions carried out in water only, and no catalytic effect was found also by using a bidentate dienophile which, in principle, should be able to coordinate the metal cation in the LASC system. [Pg.177]

Engberts [3e, f, 9, 29] investigated the influence of metal ions (Co, Ni, Cu +, Zn +) on the reaction rate and diastereoselectivity of Diels-Alder reaction of dienophile 31 (Table 6.5, R = NO2) with cyclopentadiene (32) in water and organic solvents. Relative reaction rates in different media and the catalytic effect of Cu are reported in Table 6.5. 10 m Cu(N03)2 accelerates the reaction in water by 808 times, and when compared with the uncatalyzed reaction in MeCN by a factor of 232 000. [Pg.265]

The effects of aluminium, zinc, iron, nickel and copper powders on the thermal degradation of waste PS were studied. The results showed that the catalytic effects of metal powders were related to their activities. The catalytic effects increased with increasing activities of metals. It was suggested that PS degraded through a transient intermediate in the presence of metal powders and that the degradation of the transient intermediate was the rate-determining step. 10 refs. [Pg.52]

Many of the early workers who studied the thermal decomposition reactions of diazocarbonyl compounds found that the addition of copper metal or copper salts allowed the reaction to be achieved at a lower temperature,<63AG(E)565, 64CB2628, 73JOU431> although no detailed study of this catalytic effect was undertaken. Alonso and Jano studied the copper-salt reaction of ethyl diazopyruvate 26 with acetonitrile and benzonitrile. The... [Pg.8]

GL 3] [R 5] [P 4] A catalytic effect of the fluorinated metal surface of the micro channel was clearly determined [15],... [Pg.611]

Sometimes anodic protection is used, in which case the metal s potential is made more positive. The rate of spontaneous dissolution will strongly decrease, rather than increase, when the metal s passivation potential is attained under these conditions. To make the potential more positive, one must only accelerate a coupled cathodic reaction, which can be done by adding to the solution oxidizing agents readily undergoing cathodic reduction (e.g., chromate ions). The rate of cathodic hydrogen evolution can also be accelerated when minute amounts of platinum metals, which have a stroug catalytic effect, are iucorporated iuto the metaf s surface fayer (Tomashov, 1955). [Pg.385]

The differences between faces usually are small. The reaction rates observed at the different faces as a rule are of the same order of magnitude and differ by no more than a factor of 3 to 5. Significant catalytic effects where one of the faces is tens of times more (or fess) active than the other single-crystal faces of the same metal are rare. One of the few examples is the reduction of CO2 on platinum which occurs with the formation of a strongly bound chemisorbed product (called reduced CO2). At the... [Pg.532]


See other pages where Metals, catalytic effect is mentioned: [Pg.215]    [Pg.279]    [Pg.340]    [Pg.215]    [Pg.279]    [Pg.340]    [Pg.2399]    [Pg.639]    [Pg.265]    [Pg.36]    [Pg.551]    [Pg.247]    [Pg.91]    [Pg.339]    [Pg.511]    [Pg.386]    [Pg.393]    [Pg.191]    [Pg.679]    [Pg.187]    [Pg.68]    [Pg.74]    [Pg.232]    [Pg.317]    [Pg.88]    [Pg.162]    [Pg.234]    [Pg.177]    [Pg.178]    [Pg.274]    [Pg.343]    [Pg.579]    [Pg.611]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Alkoxides, alkali metal catalytic effect

Catalytic effect

Catalytic metals

Examples of size effects on catalytic CO oxidation using metal nanoparticles

© 2024 chempedia.info