Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal particles composition

The polymer/metal particle composites have been synthesized by utilizing fine metal surfaces as effective initiation sites for radical polymerization of vaporized vinyl monomers. On the metal surfaces, GASP of vinyl monomers is initiated and induces the formation of polymer thin-film coatings of the fine metal particles. Andou et al. demonstrated that GASP of MMA on a zero-valent iron (Fe(0))... [Pg.97]

Psarras G C (2004) Hopping conductivity in polymer matrix-metal particles composites, Compos Part A 37 1545-1553. [Pg.220]

Clusters are intennediates bridging the properties of the atoms and the bulk. They can be viewed as novel molecules, but different from ordinary molecules, in that they can have various compositions and multiple shapes. Bare clusters are usually quite reactive and unstable against aggregation and have to be studied in vacuum or inert matrices. Interest in clusters comes from a wide range of fields. Clusters are used as models to investigate surface and bulk properties [2]. Since most catalysts are dispersed metal particles [3], isolated clusters provide ideal systems to understand catalytic mechanisms. The versatility of their shapes and compositions make clusters novel molecular systems to extend our concept of chemical bonding, stmcture and dynamics. Stable clusters or passivated clusters can be used as building blocks for new materials or new electronic devices [4] and this aspect has now led to a whole new direction of research into nanoparticles and quantum dots (see chapter C2.17). As the size of electronic devices approaches ever smaller dimensions [5], the new chemical and physical properties of clusters will be relevant to the future of the electronics industry. [Pg.2388]

The Beckstead-Derr-Price model (Fig. 1) considers both the gas-phase and condensed-phase reactions. It assumes heat release from the condensed phase, an oxidizer flame, a primary diffusion flame between the fuel and oxidizer decomposition products, and a final diffusion flame between the fuel decomposition products and the products of the oxidizer flame. Examination of the physical phenomena reveals an irregular surface on top of the unheated bulk of the propellant that consists of the binder undergoing pyrolysis, decomposing oxidizer particles, and an agglomeration of metallic particles. The oxidizer and fuel decomposition products mix and react exothermically in the three-dimensional zone above the surface for a distance that depends on the propellant composition, its microstmcture, and the ambient pressure and gas velocity. If aluminum is present, additional heat is subsequently produced at a comparatively large distance from the surface. Only small aluminum particles ignite and bum close enough to the surface to influence the propellant bum rate. The temperature of the surface is ca 500 to 1000°C compared to ca 300°C for double-base propellants. [Pg.36]

Metal-Matrix Composites. A metal-matrix composite (MMC) is comprised of a metal ahoy, less than 50% by volume that is reinforced by one or more constituents with a significantly higher elastic modulus. Reinforcement materials include carbides, oxides, graphite, borides, intermetahics or even polymeric products. These materials can be used in the form of whiskers, continuous or discontinuous fibers, or particles. Matrices can be made from metal ahoys of Mg, Al, Ti, Cu, Ni or Fe. In addition, intermetahic compounds such as titanium and nickel aluminides, Ti Al and Ni Al, respectively, are also used as a matrix material (58,59). P/M MMC can be formed by a variety of full-density hot consolidation processes, including hot pressing, hot isostatic pressing, extmsion, or forging. [Pg.191]

A composite material (1) is a material consisting of two or more physically and/or chemically distinct, suitably arranged or distributed phases, generally having characteristics different from those of any components in isolation. Usually one component acts as a matrix in which the reinforcing phase is distributed. When the continuous phase or matrix is a metal, the composite is a metal-matrix composite (MMC). The reinforcement can be in the form of particles, whiskers, short fibers, or continuous fibers (see Composite materials). [Pg.194]

There are three kinds of metal-matrix composites distinguished by type of reinforcement particle-reinforced MMCs, short fiber- or whisker-reinforced MMCs, and continuous fiber- or sheet-reinforced MMCs. Table 1 provides examples of some important reinforcements used in metal-matrix composites as well as their aspect (length/diameter) ratios and diameters. [Pg.194]

Fig. 1. Typical microstmctures of some metal-matrix composites (a) continuous alumina fiber/Mg and (b) siUcon carbide particle/Al composites. Fig. 1. Typical microstmctures of some metal-matrix composites (a) continuous alumina fiber/Mg and (b) siUcon carbide particle/Al composites.
Developments in metal-matrix composites technology has resulted in aluminum matrix materials filled with siUcon carbide [409-21 -2] SiC, (see Carbides, silicon carbide) particles (15 to 60 vol %) that provide the possibihty of weight reduction for brakes (20). These composite materials are being tested and evaluated. [Pg.273]

Nonconventiona.1 Solder Systems. Nonconventional solder systems are developed for use with newer alloys, especially base metal alloys. They are few in number and will probably remain the exception rather than the rule. Some new solder systems consist of metallic particles either pressed to form a rod or suspended in a paste flux. The metallic composition is close to that of the alloy to be joined. If the particles are nonhomogeneous, the solder has particles with melting points lower and higher than that of the alloy. For nonhomogeneous solders, once the flame has been placed on the parts to be joined and the soldering material, it should not be removed until the flow process is completed. [Pg.488]

Metallic Particles in Nonmetallic Matrix Composite Materials... [Pg.9]

The bonding agent technique is usually not applicable to the metal particles in the composite. However, the surface of the metal is almost invariably covered by a thin (40-80 A) oxide layer [50]. The free energy of oxide surfaces is normally quite large (10 mJ/m ) to allow quick wetting by most organic polymers (40-60 mJ/m ). Additionally, the metal surface may provide two... [Pg.715]

The defects caused by the high contact resistance especially manifest themselves in the metal-filled composites where the value of the percolation threshold may reach 0.5 to 0.6 [30]. This is caused by the oxidation of the metal particles in the process of CPCM manufacture. For this reason, only noble metals Ag and Au, and, to a lesser extent, Ni are suitable for the use as fillers for highly conductive cements used in the production of radioelectronic equipment [32]. [Pg.131]

Ceramic matrix composites are produced by one of several methods. Short fibers and whiskers can be mixed with a ceramic powder before the body is sintered. Long fibers and yams can be impregiated with a slurry of ceramic particles and, after drying, be sintered. Metals (e.g., aluminum, magnesium, and titanium) are frequently used as matrixes for ceramic composites as well. Ceramic metal-matrix composites are fabricated by infiltrating arrays of fibers with molten metal so that a chemical reaction between the fiber and the metal can take place in a thin layer surrounding the fiber. [Pg.81]


See other pages where Metal particles composition is mentioned: [Pg.282]    [Pg.803]    [Pg.188]    [Pg.597]    [Pg.303]    [Pg.303]    [Pg.305]    [Pg.307]    [Pg.309]    [Pg.702]    [Pg.363]    [Pg.363]    [Pg.282]    [Pg.803]    [Pg.188]    [Pg.597]    [Pg.303]    [Pg.303]    [Pg.305]    [Pg.307]    [Pg.309]    [Pg.702]    [Pg.363]    [Pg.363]    [Pg.547]    [Pg.188]    [Pg.197]    [Pg.199]    [Pg.204]    [Pg.396]    [Pg.166]    [Pg.129]    [Pg.53]    [Pg.156]    [Pg.95]    [Pg.95]    [Pg.553]    [Pg.130]    [Pg.20]    [Pg.90]    [Pg.293]   
See also in sourсe #XX -- [ Pg.443 ]




SEARCH



Metal composites

Metal composition

Metalation composition

Metallic composites

Metallic particles

Metallization composites

© 2024 chempedia.info