Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-nitrogen coordination bonds

When sufficient thermal energy is supplied to dissociate at least one metal-nitrogen chemical bond in tire glassy complex Mo(C=0)4(CH3NH2)2, this coordi-natively saturated crosslinked structure reverts to a 5-coordinate complex above the glass-transition temperatrrre. The ligand dissociation reaction is... [Pg.33]

When, however, the ligand molecule or ion has two atoms, each of which has a lone pair of electrons, then the molecule has two donor atoms and it may be possible to form two coordinate bonds with the same metal ion such a ligand is said to be bidentate and may be exemplified by consideration of the tris(ethylenediamine)cobalt(III) complex, [Co(en)3]3+. In this six-coordinate octahedral complex of cobalt(III), each of the bidentate ethylenediamine molecules is bound to the metal ion through the lone pair electrons of the two nitrogen atoms. This results in the formation of three five-membered rings, each including the metal ion the process of ring formation is called chelation. [Pg.52]

Two types of NO coordination to ruthenium are known linear Ru-N—O 180° and bent, Ru-N-O 120°. Since NO+ is isoelectronic with CO, linear Ru-N-O bonding is generally treated as coordination of NO+, with bent coordination corresponding to NO- thus, in the former an electron has initially been donated from NO to Ru, as well as the donation of the lone pair, whereas in the latter an electron is donated from the ruthenium to NO (making it NO-) followed by donation of the lone pair from N. Though an oversimplification, this view allows a rationale of metal-nitrogen bond lengths, as with the Ru—NO+ model 7r-donation is important and a shorter Ru—NO bond is predicted - and, in fact, observed. [Pg.42]

Thiourea Ugands can be bounded to the metal centre through one nitrogen atom, the sulfur atom, or the C = S double bond. These coordination modes were studied by density functional theory calculations for Rh-thiourea complexes (Scheme 13). No stable structure was attained by optimisation of the nitrogen coordination mode I but optimised geometries as trigonal-bipyramidal complexes were obtained for modes II and III. An coordination is determined for the latter complex through both S and C atoms. As this... [Pg.241]

In this review, CPOs constructed by covalent bonds are mainly focused on however, stable coordination bonds comparable to the stability of the covalent bonds have potential for future enhanced molecular design of novel CPOs. One representative is the bond between pyridine-type nitrogen and metal, which is widely used in supramolecular chemistry, that is, the cyclic supramolecular formation reaction between pyridine-substituted porphyrin and metal salts (Fig. 6d) [27,28]. Palladium salts are frequently used as the metal salts. From the viewpoint of the hard and soft acid and base theory (HSAB), this N-Pd coordination bond is a well-balanced combination, because the bonds between nitrogen and other group X metals, N-Ni and Ni-Pt coordination bonds, are too weak and too strong to obtain the desired CPOs, respectively. For the former, the supramolecular architectures tend to dissociate into pieces in the solution state, and for the latter. [Pg.76]

While metal-nitrogen and metal-oxygen bonded compounds dominate nucleobase coordination chemistry, examples in which metal-carbon bonds are formed have been identified. Early studies on the synthesis of metal-labeled DNA demonstrated that nucleotide-triphosphates, UTP, CTP, dUTP, and dCTP, can undergo mercury modification at C5 (82,83). The UTP derivative was also shown to act as a substrate for RNA polymerase in the presence of mercaptans (83). Later, guano-sine was shown to undergo mercury modification at C8 though, in this case, the purine was multiply substituted, 21 (84). [Pg.113]

Tables 15 and 16 show the absorption maxima of some metal complexes of benzothiazolyl-substituted formazans 230 and 231.283 The wavelengths are metal ion dependent, making formazans useful reagents for the identification of specific metal ions or the simultaneous determination of two ions. The wavelengths are much longer than those of the formazan anion (Table 14). The general trend for electron-rich substituents is toward a larger shift this is to be expected as it tends to enhance the aromatic character of the ring and increase the covalent character of the metal — nitrogen bond. The sharpness of the absorption band has been attributed to coordination to the heterocyclic nitrogen as in 232.57S... Tables 15 and 16 show the absorption maxima of some metal complexes of benzothiazolyl-substituted formazans 230 and 231.283 The wavelengths are metal ion dependent, making formazans useful reagents for the identification of specific metal ions or the simultaneous determination of two ions. The wavelengths are much longer than those of the formazan anion (Table 14). The general trend for electron-rich substituents is toward a larger shift this is to be expected as it tends to enhance the aromatic character of the ring and increase the covalent character of the metal — nitrogen bond. The sharpness of the absorption band has been attributed to coordination to the heterocyclic nitrogen as in 232.57S...
Metal-Nitrogen Bond Lengths and Torsion Angles between the Metal and Nitrogen Coordination Planes for Three-Coordinate Aluminum, Gallium, Indium, and Thallium Amides... [Pg.19]

The insertion of unsaturated molecules into metal-carbon bonds is a critically important step in many transition-metal catalyzed organic transformations. The difference in insertion propensity of carbon-carbon and carbon-nitrogen multiple bonds can be attributed to the coordination characteristics of the respective molecules. The difficulty in achieving a to it isomerization may be the reason for the paucity of imine insertions. The synthesis of amides by the insertion of imines into palladium(II)-acyl bonds is the first direct observation of the insertion of imines into bonds between transition metals and carbon (see Scheme 7). The alternating copolymerization of imines with carbon monoxide (in which the insertion of the imine into palladium-acyl bonds would be the key step in the chain growth sequence), if successful, should constitute a new procedure for the synthesis of polypeptides (see Scheme 7).348... [Pg.589]

The sodium and calcium salts of EDTA (ethylenediaminetetraacetic acid, Fig. 9.3.1.) are common sequestrants in food products. A three-dimensional representation of EDTA is shown in color Fig. 9.3.2. The EDTA ion is an especially effective sequestrant, forming up to six coordinate covalent bonds with a metal ion. These bonds are so named because a lone pair of electrons on a single atom serves as the source of the shared electrons in the bond between the metal ion and EDTA. The two nitrogen atoms in the amino groups and the oxygen... [Pg.120]


See other pages where Metal-nitrogen coordination bonds is mentioned: [Pg.2418]    [Pg.17]    [Pg.37]    [Pg.2418]    [Pg.17]    [Pg.37]    [Pg.147]    [Pg.148]    [Pg.148]    [Pg.179]    [Pg.181]    [Pg.418]    [Pg.129]    [Pg.123]    [Pg.93]    [Pg.109]    [Pg.793]    [Pg.794]    [Pg.794]    [Pg.825]    [Pg.178]    [Pg.351]    [Pg.258]    [Pg.58]    [Pg.82]    [Pg.434]    [Pg.74]    [Pg.168]    [Pg.204]    [Pg.808]    [Pg.424]    [Pg.236]    [Pg.224]    [Pg.226]    [Pg.310]    [Pg.217]    [Pg.625]    [Pg.921]    [Pg.221]    [Pg.209]    [Pg.106]    [Pg.30]    [Pg.34]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Bonding coordinate

Bonding metal-nitrogen

Coordinate bond

Coordination bonding

Coordinative bonding

Coordinative bonding coordinate

Metal coordination bond

Metal nitrogen

Metals metal-nitrogen bond

Nitrogen coordination

© 2024 chempedia.info