Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal, metals tungsten

Fused Salt Electrolysis. Only light RE metals (La to Nd) can be produced by molten salt electrolysis because these have a relatively low melting point compared to those of medium and heavy RE metals. Deposition of an alloy with another metal, Zn for example, is an alternative. The feed is a mixture of anhydrous RE chlorides and fluorides. The materials from which the electrolysis cell is constmcted are of great importance because of the high reactivity of the rare-earth metals. Molybdenum, tungsten, tantalum, or alternatively iron with ceramic or graphite linings are used as cmcible materials. Carbon is frequently used as an anode material. [Pg.546]

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

Reduction to Solid Metal. Metals having very high melting points caimot be reduced in the Hquid state. Because the separation of a soHd metallic product from a residue is usually difficult, the raw material must be purified before reduction. Tungsten and molybdenum, for instance, are prepared by reduction of a purified oxide (WO, MoO ) or a salt, eg, (NH2 2 G4, using hydrogen. A reaction such as... [Pg.168]

In appUcations in which electrical conductivity is required, metals, copper, tungsten, molybdenum, and Kovar [12606-16-5] are the preferred chip-carrier materials. Metals have exceUent thermal conductivities. Tables 2 and 3 Ust the various materials used for substrates, along with their mechanical, electrical, and thermal properties. [Pg.526]

Ferro tungsten Tungsten metal powder Tungsten carbide powder Tungsten e scrap Other tungsten materials Total... [Pg.284]

The four most important carbides for the production of hard metals are tungsten carbide [12070-12-17, WC, titanium carbide [12070-08-5] TiC, tantalum carbide [12070-06-3J, TaC, and niobium carbide [12069-94-2] NbC. The binary and ternary soHd solutions of these carbides such as WC—TiC and WC—TiC—TaC (NbC) are also of great importance. Chromium carbide (3 2) [12012-39-0], molybdenum carbide [12011-97-1], MoC, and... [Pg.448]

The neutral complexes of chromium, molybdenum, tungsten, and vanadium are six-coordinate and the CO molecules are arranged about the metal in an octahedral configuration as shown in stmcture (3). Vanadium carbonyl possesses an unpaired electron and would be expected to form a metal—metal bond. Steric hindrance may prevent dimerization. The other hexacarbonyls are diamagnetic. [Pg.63]

Wolframit, n. (Min.) wolframite. Wolfram-lampe, /. tungsten lamp, metall, n. metallic tungsten, -ocker, m. tungstic ocher, tungstite. -oxyd, n. tungsten oxide, -salz, n. tungsten salt. [Pg.518]

Oxyacetylene, manual metal are, tungsten inert gas, metal inert gas, carbon dioxide, pulsed are, fused are, submerged arc, electro slag and electron beam... [Pg.90]

Metal-metal bonds and metal-carbon bonds in the chemistry of molybdenum and tungsten alkox-ides. M. H. Chisholm, Polyhedron, 1983, 2, 681-721 (90). [Pg.47]

Tungsten i s a highly refractory, high-density metal. It has excellent chemical resistance except that it oxidizes readily. It is brittle mostly because of impurities and is difficult to form by standard metallurgical processes. It can be produced easily by CVD as a very pure and relatively ductile metal. CVD tungsten is used in many applications and is an important semiconductor metal. Its properties are summarized in Table 6.13. [Pg.171]

Metal polishing mechanisms appear to be considerably different from silica polishing. The critical event that determines the polishing process in metal CMP appears not only to be influenced by the crystallographic/microstructure deformation process but also to relate to more complex components of slurry [18]. To better understand the removal mechanism in metal CMP, tungsten is chosen, since both industrial and laboratory CMP data are available for this metal, and its abrasion behavior as a metal is similar to that of other ductile metals which have been studied quite extensively under two- and three-body abrasion [66]. [Pg.251]

Unlike the cathodic reaction, anodic oxidation (ionization) of molecular hydrogen can be studied for only a few electrode materials, which include the platinum group metals, tungsten carbide, and in alkaline solutions nickel. Other metals either are not sufficiently stable in the appropriate range of potentials or prove to be inactive toward this reaction. For the materials mentioned, it can be realized only over a relatively narrow range of potentials. Adsorbed or phase oxide layers interfering with the reaction form on the surface at positive potentials. Hence, as the polarization is raised, the anodic current will first increase, then decrease (i.e., the electrode becomes passive see Fig. 16.3 in Chapter 16). In the case of nickel and tungsten... [Pg.265]

Metal Oxides Tungsten trioxide, undoubtedly the most widely studied electrochromic material, is used in several types of commercial electrochromic devices. [Pg.623]

Analysis of thermal decomposition of molecules on hot surfaces of solids is of considerable interest not only for investigation of mechanisms of heterogeneous decomposition of molecules into fragments which interact actively with solid surfaces. It is of importance also for clarifying the role of the chemical nature of a solid in this process. Furthermore, pyrolysis of molecules on hot filaments made of noble metals, tungsten, tantalum, etc., is a convenient experimental method for producing active particles. Note that it allows continuous adjustment of the intensity of the molecular flux by varying the temperature of the filament [8]. [Pg.222]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]


See other pages where Metal, metals tungsten is mentioned: [Pg.439]    [Pg.51]    [Pg.347]    [Pg.159]    [Pg.110]    [Pg.119]    [Pg.253]    [Pg.403]    [Pg.7]    [Pg.27]    [Pg.40]    [Pg.57]    [Pg.284]    [Pg.290]    [Pg.291]    [Pg.2044]    [Pg.909]    [Pg.39]    [Pg.980]    [Pg.298]    [Pg.716]    [Pg.295]    [Pg.167]    [Pg.240]    [Pg.468]    [Pg.288]    [Pg.378]    [Pg.123]    [Pg.54]    [Pg.126]    [Pg.54]    [Pg.307]    [Pg.560]    [Pg.114]   
See also in sourсe #XX -- [ Pg.197 , Pg.270 ]




SEARCH



Metallic tungsten

Tungsten metal

© 2024 chempedia.info