Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal carbonyls, catalysis with

Metal carbonyl catalysis improves the yields in the condensation of aldehydes with isocyanates to give imines. The utility of molecular sieves in the preparation of aldehyde and ketone di-s-alkyl acetals, enamines and ketimines has been noted. [Pg.183]

The reactivity of metal-carbonyl clusters with unsaturated hydrocarbons gives an idea of what may happen on surfaces in heterogeneous catalysis, although the conditions and pathways are different, because surfaces of heterogeneous catalysts are not saturated with ligands whereas clusters are (see Chap. 20). Many bond activations have been shown (CO, PPhs, alkenes, alkynes, etc.), a simple one being the reaction of ethylene leading to double C-H activation. Such bond activations are common and rather facile because of the proximity of the metals in the clusters ... [Pg.72]

Positionalisomeri tion occurs most often duting partial hydrogenation of unsaturated fatty acids it also occurs ia strongly basic or acidic solution and by catalysis with metal hydrides or organometaUic carbonyl complexes. Concentrated sulfuric or 70% perchloric acid treatment of oleic acid at 85°C produces y-stearolactone from a series of double-bond isomerizations, hydration, and dehydration steps (57). [Pg.86]

There are only a few weU-documented examples of catalysis by metal clusters, and not many are to be expected as most metal clusters are fragile and fragment to give metal complexes or aggregate to give metal under reaction conditions (39). However, the metal carbonyl clusters are conceptually important because they form a bridge between catalysts commonly used in solution, ie, transition-metal complexes with single metal atoms, and catalysts commonly used on surfaces, ie, small metal particles or clusters. [Pg.169]

Heterogeneous catalysis by metals has been of long-standing interest, with bimetallic catalysts a particular focus.Transition metal carbonyls have... [Pg.112]

Susac et al. [33] showed that the cobalt-selenium (Co-Se) system prepared by sputtering and chemical methods was catalytically active toward the ORR in an acidic medium. Lee et al. [34] synthesized ternary non-noble selenides based on W and Co by the reaction of the metal carbonyls and elemental Se in xylenes. These W-Co-Se systems showed catalytic activity toward ORR in acidic media, albeit lower than with Pt/C and seemingly proceeding as a two-electron process. It was pointed out that non-noble metals too can serve as active sites for catalysis, in fact generating sufficient activity to be comparable to that of a noble metal, provided that electronic effects have been induced by the chalcogen modification. [Pg.317]

The decarbonylation of oxide-supported metal carbonyls yields gaseous products including not just CO, but also CO2, H2, and hydrocarbons [20]. The chemistry evidently involves the support surface and breaking of C - O bonds and has been thought to possibly leave C on the clusters [21]. The chemistry has been compared with that occurring in Fischer-Tropsch catalysis on metal surfaces [20] support hydroxyl groups are probably involved in the chemistry. [Pg.217]

It is important to realize that there is a great deal of overlap in the topics covered in this chapter. For example, the chemistry of metal carbonyls is intimately related to metal alkene complexes, because both types of ligands are soft bases and many complexes contain both carbonyl and alkene ligands. Also, both areas are closely associated with catalysis by complexes discussed in Chapter 22, because some of the best-known catalysts are metal carbonyls and they involve reactions of alkenes. Therefore, the separation of topics applied is certainly not a clear one. Catalysis by metal complexes embodies much of the chemistry of both metal carbonyls and metal alkene complexes. [Pg.739]

A report in 1977 (3) of an active system prepared from [Rh(CO)2CI]2, CH3CO2H, cone. HC1 and Nal in water demonstrated that a basic medium is not a necessary condition for WGSR catalysis. This result stimulated us to examine the potential activity of several simple metal carbonyls in acidic solution as well. Attempts with Fe(CO)5 and Iri (CO)12 (17), both active in alkaline and amine solutions, proved unfruitful. However Ru3(CO)12 in acidic (0.5 N H2SOtf) aqueous ethoxyethanol gave WGSR activity substantilly larger than found in basic solutions under otherwise analogous conditions (Pco=0.9 atm, T=100°C, [Ru]Total=0 036 mol/L) (15). This solution proved unstable and... [Pg.101]

The Importance of Reactions of Oxygen Bases with Metal Carbonyl Derivatives in Catalysis... [Pg.111]

Base catalysis of ligand substitutional processes of metal carbonyl complexes in the presence of oxygen donor bases may be apportioned into two distinct classifications. The first category of reactions involves nucleophilic addition of oxygen bases at the carbon center in metal carbonyls with subsequent oxidation of CO to C02, eqns. 1 and 2 (l, 2). Secondly, there are... [Pg.111]

Cabeza, J.A., in Braunstein, P., Oro, L.A., Raithby, P.R. (Eds.), Homogeneous Catalysis with Ruthenium Carbonyl Cluster Complexes Metal Clusters in Chemistry, Vol. 2. Wiley-VCH GmbH, Weinheim,... [Pg.409]

Ford et al.60 also made a significant contribution to the metal carbonyl catalyzed shift reaction in acidic medium. A solution of Ru3(CO)i2 (0.006-0.024 M with 0.25-2.0 M H2S04 4.0-12.0 M H20) in 5 ml of diglyme had good catalytic activity at 100 °C. They used a batch reactor with Pqo = 0-9 atm. Typical H2 turnover activity was reported to be about 50 turnovers per day. Their in situ spectroscopic studies show that the principal component was HRu2(CO)8-. They found that, at low CO partial pressures (< 1 atm), the catalysis was first order in Ru. However, at high CO partial pressures, the rate was inhibited. On the basis of their studies, they proposed the catalytic cycle outlined in Scheme 15. [Pg.130]

Metal-ion catalysis has been extensively reviewed (Martell, 1968 Bender, 1971). It appears that metal ions will not affect ester hydrolysis reactions unless there is a second co-ordination site in the molecule in addition to the carbonyl group. Hence, hydrolysis of the usual types of esters is not catadysed by metal ions, but hydrolysis of amino-acid esters is subject to catalysis, presumably by polarization of the carbonyl group (KroU, 1952). Cobalt (II), copper (II), and manganese (II) ions promote hydrolysis of glycine ethyl ester at pH 7-3-7-9 and 25°, conditions under which it is otherwise quite stable (Kroll, 1952). The rate constants have maximum values when the ratio of metal ion to ester concentration is unity. Consequently, the most active species is a 1 1 complex. The rate constant increases with the ability of the metal ion to complex with 2unines. The scheme of equation (30) was postulated. The rate of hydrolysis of glycine ethyl... [Pg.66]

On the other hand, hi- or multi-metallic supported systems have been attracting considerable interest in research into heterogeneous catalysis as a possible way to modulate the catalytic properties of the individual monometalUc counterparts [12, 13]. These catalysts usually show new catalytic properties that are ascribed to geometric and/or electronic effects between the metalUc components. Of special interest is the preparation of supported bimetallic catalysts using metal carbonyls as precursors, since the milder conditions used, when compared with conventional methods, can render catalysts with homogeneous bimetallic entities of a size and composition not usually achieved when conventional salts are employed as precursors. The use of these catalysts as models can lead to elucidation of the relationships between the structure and catalytic behavior of bimetalUc catalysts. [Pg.316]

Two classes of promoter have been identified for iridium catalysed carbonylation (i) transition metal carbonyls or halocarbonyls (ri) simple group 12 and 13 iodides. Increased rates of catalysis are achieved on addition of 1-10 mole equivalents (per Ir) of the promoter. An example from each class was chosen for spectroscopic study. An Inis promoter provides a relatively simple system since the main group metal does not tend to form carbonyl complexes which can interfere with the observation of iridium species by IR. In situ HP IR studies showed that an indium promoter (Inl3 Ir = 2 1) did not greatly affect the iridium speciation, with [MeIr(CO)2l3] being converted into [Ir(CO)2l4] as the batch reaction progressed, as in the absence of promoter. [Pg.121]


See other pages where Metal carbonyls, catalysis with is mentioned: [Pg.314]    [Pg.3218]    [Pg.3217]    [Pg.265]    [Pg.465]    [Pg.204]    [Pg.208]    [Pg.47]    [Pg.37]    [Pg.109]    [Pg.103]    [Pg.205]    [Pg.155]    [Pg.119]    [Pg.123]    [Pg.213]    [Pg.252]    [Pg.1396]    [Pg.411]    [Pg.127]    [Pg.136]    [Pg.138]    [Pg.140]    [Pg.10]    [Pg.83]    [Pg.186]    [Pg.365]    [Pg.175]    [Pg.195]    [Pg.1]    [Pg.273]    [Pg.242]    [Pg.1441]    [Pg.365]   
See also in sourсe #XX -- [ Pg.357 , Pg.362 ]




SEARCH



Carbonylation with metal carbonyls

Catalysis carbonylation

© 2024 chempedia.info