Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal alloys transition diffusion

SSAR is observed when the binary diffusion couples listed in Table 2.4 are heated to an appropriate reaction temperature, TR. Examples of typical values of JR are given in Table 2.4. It is well known that amorphous metallic alloys tend to crystallize in laboratory timescales upon heating to temperatures close to their glass-transition temperature, T% [2.16]. For a typical practical timescale (e.g., minutes), one can define crystallization temperature as the temperature at which a significant fraction of an amorphous sample undergoes crystallization in the specified time. The time required for an amorphous phase to crystallize can be identified with t 2 of Fig. 2.6 (see discussion in Sect 2.1.3). In the low temperature regime (well below Tg), atomic diffusion in amorphous alloys is... [Pg.27]

Shape memory effect in metallic alloys. Martensitic transition diffusion. [Pg.207]

Kassner used a rotating disc, for which the hydrodynamic conditions are well defined, to study the dissolution kinetics of Type 304 stainless steel in liquid Bi-Sn eutectic. He established a temperature and velocity dependence of the dissolution rate that was consistent with liquid diffusion control with a transition to reaction control at 860 C when the speed of the disc was increased. The rotating disc technique has also been used to investigate the corrosion stability of both alloy and stainless steels in molten iron sulphide and a copper/65% calcium melt at 1220 C . The dissolution rate of the steels tested was two orders of magnitude higher in the molten sulphide than in the metal melt. [Pg.1062]

Platinum-based catalysts are widely used in low-temperature fuel cells, so that up to 40% of the elementary fuel cell cost may come from platinum, making fuel cells expensive. The most electroreactive fuel is, of course, hydrogen, as in an acidic medium. Nickel-based compounds were used as catalysts in order to replace platinum for the electrochemical oxidation of hydrogen [66, 67]. Raney Ni catalysts appeared among the most active non-noble metals for the anode reaction in gas diffusion electrodes. However, the catalytic activity and stability of Raney Ni alone as a base metal for this reaction are limited. Indeed, Kiros and Schwartz [67] carried out durability tests with Ni and Pt-Pd gas diffusion electrodes in 6 M KOH medium and showed increased stability for the Pt-Pd-based catalysts compared with Raney Ni at a constant load of 100 mA cm and at temperatures close to 60 °C. Moreover, higher activity and stability could be achieved by doping Ni-Al alloys with a few percent of transition metals, such as Ti, Cr, Fe and Mo [68-70]. [Pg.33]

Reaction 5.45 is at least partly hypothetical. Evidence that the Cl does react with the Na component of the alanate to form NaCl was found by means of X-ray diffraction (XRD), but the final form of the Ti catalyst is not clear [68]. Ti is probably metallic in the form of an alloy or intermetallic compound (e.g. with Al) rather than elemental. Another possibility is that the transition metal dopant (e.g. Ti) actually does not act as a classic surface catalyst on NaAlH4, but rather enters the entire Na sublattice as a variable valence species to produce vacancies and lattice distortions, thus aiding the necessary short-range diffusion of Na and Al atoms [69]. Ti, derived from the decomposition of TiCU during ball-milling, seems to also promote the decomposition of LiAlH4 and the release of H2 [70]. In order to understand the role of the catalyst, Sandrock et al. performed detailed desorption kinetics studies (forward reactions, both steps, of the reaction) as a function of temperature and catalyst level [71] (Figure 5.39). [Pg.147]

W. Lengauer. Multiphase reaction diffusion in transition metal-carbon and transition metal-nitrogen systems // J.Alloys Compounds - 1995 - V.229 - P.80-92. [Pg.278]

Fukai Y, Kazama S. NMR studies of anomalous diffusion of hydrogen and phase transition in vanadium-hydrogen alloys . Acta Metall., (1977), 25, 59-70. [Pg.95]

Figure 5. Schematic arrangement of the surface of a partly crystallized E-L TM amorphous alloy such as Pd-Zr. A matrix of zirconia consisting of the two polymorphs holds particles of the L transition metal (Pd) which are structured in a skin of solid solution with oxygen (white) and a nucleus of pure metal (black). The arrows indicate transport pathways for activated oxygen either through bulk diffusion or via the top surface. An intimate contact with a large metal-to-oxide interface volume with ill-defined defective crystal structures (shaded area) is essential for the good catalytic performance. The figure is compiled from the experimental data in the literature [26, 27]. Figure 5. Schematic arrangement of the surface of a partly crystallized E-L TM amorphous alloy such as Pd-Zr. A matrix of zirconia consisting of the two polymorphs holds particles of the L transition metal (Pd) which are structured in a skin of solid solution with oxygen (white) and a nucleus of pure metal (black). The arrows indicate transport pathways for activated oxygen either through bulk diffusion or via the top surface. An intimate contact with a large metal-to-oxide interface volume with ill-defined defective crystal structures (shaded area) is essential for the good catalytic performance. The figure is compiled from the experimental data in the literature [26, 27].
Solid-state nuclear magnetic resonance (NMR) has been extensively used to assess structural properties, electronic parameters and diffusion behavior of the hydride phases of numerous metals and alloys using mostly transient NMR techniques or low-resolution spectroscopy [3]. The NMR relaxation times are extremely useful to assess various diffusion processes over very wide ranges of hydrogen mobility in crystalline and amorphous phases [3]. In addition, several borohydrides [4-6] and alanates [7-11] have also been characterized by these conventional solid-state NMR methods over the years where most attention was on rotation dynamics of the BHT, A1H4, and AlHe anions detection of order-disorder phase transitions or thermal decomposition. There has been little indication of fast long-range diffusion behavior in any complex hydride studied by NMR to date [4-11]. [Pg.193]


See other pages where Metal alloys transition diffusion is mentioned: [Pg.501]    [Pg.266]    [Pg.171]    [Pg.110]    [Pg.277]    [Pg.246]    [Pg.3]    [Pg.306]    [Pg.66]    [Pg.159]    [Pg.768]    [Pg.377]    [Pg.615]    [Pg.191]    [Pg.368]    [Pg.140]    [Pg.289]    [Pg.292]    [Pg.191]    [Pg.400]    [Pg.463]    [Pg.114]    [Pg.130]    [Pg.290]    [Pg.185]    [Pg.362]    [Pg.264]    [Pg.253]    [Pg.256]    [Pg.213]    [Pg.216]    [Pg.30]    [Pg.350]    [Pg.402]    [Pg.112]    [Pg.233]    [Pg.102]   
See also in sourсe #XX -- [ Pg.207 ]




SEARCH



Alloy metallic alloys

Metallic alloys

Metals alloys

Transition metal alloys

© 2024 chempedia.info