Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal alkene metathesis

When a mixture of alkenes 1 and 2 or an unsymmetrically substituted alkene 3 is treated with an appropriate transition-metal catalyst, a mixture of products (including fi/Z-isomers) from apparent interchange of alkylidene moieties is obtained by a process called alkene metathesis. With the development of new catalysts in recent years, alkene metathesis has become a useful synthetic method. Special synthetic applications are, for example, ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROM) (see below). [Pg.10]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

Scheme 6.3. Zr-catalyzed enantioselective ethylmagnesation and metal-catalyzed alkene metathesis make effective partners. In the two cases shown here, the alkene substrate is synthesized and enantioselectively alkylated in the same vessel. Scheme 6.3. Zr-catalyzed enantioselective ethylmagnesation and metal-catalyzed alkene metathesis make effective partners. In the two cases shown here, the alkene substrate is synthesized and enantioselectively alkylated in the same vessel.
Carbenes are both reactive intermediates and ligands in catalysis. They occur as intermediates in the alkene metathesis reaction (Chapter 16) and the cyclopropanation of alkenes. As intermediates they carry hydrogen and carbon substituents and belong therefore to the class of Schrock carbenes. As ligands they contain nitrogen substituents and are clearly Fischer carbenes. They have received a great deal of attention in the last decade as ligands in catalytic metal complexes [58], but the structural motive was already explored in the early seventies [59],... [Pg.24]

Initially, it was thought more likely that the electron poor metal atom would be involved in the electrophilic attack at the alkene and also the metal-carbon bond would bring the alkene closer to the chiral metal-ligand environment. This mechanism is analogous to alkene metathesis in which a metallacyclobutane is formed. Later work, though, has shown that for osmium the actual mechanism is the 3+2 addition. Molecular modelling lends support to the 3+2 mechanism, but also kinetic isotope effects support this (KIEs for 13C in substrate at high conversion). Oxetane formation should lead to a different KIE for the two alkene carbon atoms involved. Both experimentally and theoretically an equal KIE was found for both carbon atoms and thus it was concluded that an effectively symmetric addition, such as the 3+2 addition, is the actual mechanism [22] for osmium. [Pg.312]

I 7 7 Surface Organometallic Chemistry of d(0) Metal Complexes Table 11.3 Alkene metathesis with surface organometallic and related species. [Pg.430]

Since the alkene formed in this reaction can further react with other alkenes, many products should be formed in the cross-metathesis (CM). Therefore, in the early days, only ring-closing metathesis (RCM) of diene was investigated. It is known that the reaction is catalyzed by a transition metal. Pioneering work on olefin metathesis was undertaken by Villemin and Tsuji, who reported the synthesis of lactones using alkene metathesis ... [Pg.153]

Much of the chemistry of vinylidene complexes has been developed with catalytic applications in mind, as detailed later in this volume. Early examples had low activity for alkene metathesis, although complexes containing imidazolylidene ligands showed improved efficiencies [35]. However, in many cases, reactions of the vinylidene ligand have resulted in transformation to other carbon-based ligands which have not been released from the metal fragment. [Pg.20]

In 1998 it was revealed that allenylidene-ruthenium complexes, arising simply from propargylic alcohols, were efficient precursors for alkene metathesis [12], This discovery first initiated a renaissance in allenylidene metal complexes as possible alkene metathesis precursors, then it was observed and demonstrated that allenylidene-ruthenium complexes rearranged into indenylidene-ruthenium intermediates that are actually the real catalyst precursors. The synthesis of indenylidene-metal complexes and their efficient use in alkene metathesis are now under development. The interest in finding a convenient source of easy to make alkene metathesis initiators is currently leading to investigation of other routes to initiators from propargylic derivatives. [Pg.252]

The evidence that mthenium-allenylidenes were easy to make and eflEcient alkene metathesis precursors motivated several groups to design new allenylidene metal complexes and to explore their impact on alkene metathesis. Nolan first reported... [Pg.256]

This stoichiometric reaction constitutes a new contribution to vinylidene chemistry and a novel method to generate alkenylcarbene ligand from simple propargyl alkyl ethers rather than via activation of cyclopropenes [4] or by stoichiometric activation of butadiene [6[. When linked to a suitable metal-ligand moiety this carbene constitutes an alkene metathesis initiator. [Pg.264]

Since many metal fragments are isolobal with CH2, it should be possible to make a range of metallacycloalkanes. Metallacyclobutanes are well known as a class of compounds and serve as key intermediates in catalytic alkene metathesis.1 This reaction has gained great importance in recent years through the work of Grubbs2 and Schrock.3 Alkene metathesis has many applications in organic chemistry,... [Pg.149]

Transition-metal-catalysed metathesis of alkenes (Scheme 1.12) is more removed from conventional organic chemistry than the above Michael-like reaction, and its investigation has been a major challenge (see Chapter 12). The novelty and enormous value of these reactions have been recognised by the award of the 2005 Nobel Prize for Chemistry to Chauvin, Schrock and Grubbs for their seminal investigations in this area [28]. [Pg.15]

Product distribution analysis, and kinetics determined by classical and advanced NMR techniques the transition-metal-catalysed metathesis of alkenes... [Pg.343]

With the advances in pro-catalyst design that have been witnessed over the last decade or so, the transition-metal-catalysed alkene metathesis reaction has now become a practical procedure that can be utilised by the chemist at the bench. Undeniably, this has added a new dimension to the repertoire of synthetic organic chemistry as it facilitates disconnections that, pre-metathesis, simply would not have been considered. Take, for example, a macro-cyclic amide where the normal disconnection would be at the amide. Now, with the ready reduction of alkenes to alkanes, a ring-closing diene metathesis (RCM), followed by hydrogenation, becomes an alternative disconnection. And, when one considers that any of the C—C linkages could be established in such a manner, the power of the RCM disconnection becomes obvious. [Pg.343]

The alkene metathesis reaction arose serendipitously from the exploration of transition-metal-catalysed alkene polymerisation. Due to the complexity of the polymeric products, the metathetic nature of the reaction seems to have been overlooked in early reports. However, in 1964, Banks and Bailey reported on what was described as the olefin disproportionation of acyclic alkenes where exchange was evident due to the monomeric nature of the products [8]. The reaction was actually a combination of isomerisation and metathesis, leading to complex mixtures, but by 1966 Calderon and co-workers had reported on the preparation of a homogeneous W/Al-based catalyst system that effected extraordinarily rapid alkylidene... [Pg.343]

Alkene metathesis, a remarkable reaction catalyzed by transition metal catalysts, can be traced back to Ziegler-Natta chemistry as its origin [11], In 1964, Natta et al. reported a new type polymerization of cyclopentene using Mo- or W-based catalyst, without knowing the mechanism. This was the first example of ring-opening metathesis polymerization (ROMP eq. 1.9) [12],... [Pg.4]

The elimination of a-hydrogen is not general and observed only with limited numbers of metal complexes. The elimination of a-hydrogen from the methyl group in the dimethylmetal complex 68 generates the metal hydride 69 and a carbene that coordinates to the metal. Liberation of methane by the reductive elimination generates the carbene complex 70. Formation of carbene complexes of Mo and Wis a key step in alkene metathesis. The a-elimination is similar to the 1,2-hydride shift observed in organic reactions. [Pg.20]

These carbene (or alkylidene) complexes are used as either stoichiometric reagents or catalysts for various transformations which are different from those of free carbenes. Reactions involving the carbene complexes of W, Mo, Cr, Re, Ru, Rh, Pd, Ti and Zr are known. Carbene complexes undergo the following transformations (i) alkene metathesis (ii) alkene cyclopropanation (iii) carbonyl alkenation (iv) insertion to C—H, N—H and O—H bonds (v) ylide formation and (vi) dimerization. Their chemoselectivity depends mainly on the metal species and ligands, as discussed in the following sections. [Pg.305]

At present, Mo, W, Re and Ru complexes are known to catalyse alkene metathesis [7]. This unique reaction, catalysed by transition metal complexes, is impossible to achieve by other means. Later, based on studies of the reactivities of Fischer-type carbene complexes, it was discovered that carbene complexes are the intermediates in alkene metatheses. WClg reacts with EtAlCl2 to afford the diethyltungsten complex 3 by transmetallation, and subsequent elimination of a-hydrogen generates ethane and the carbene complex 4 which is the active catalyst. [Pg.307]


See other pages where Metal alkene metathesis is mentioned: [Pg.253]    [Pg.253]    [Pg.13]    [Pg.14]    [Pg.192]    [Pg.487]    [Pg.259]    [Pg.124]    [Pg.390]    [Pg.145]    [Pg.574]    [Pg.39]    [Pg.13]    [Pg.159]    [Pg.251]    [Pg.251]    [Pg.665]    [Pg.667]    [Pg.668]    [Pg.357]    [Pg.156]    [Pg.327]    [Pg.343]    [Pg.340]    [Pg.709]   
See also in sourсe #XX -- [ Pg.555 ]




SEARCH



Alkene metathesis

Alkenes metallation

Metal alkenes

Metal metathesis

© 2024 chempedia.info