Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesylates alcohols

Some synthetically important allenylmetallics, such as allenylzinc and allenylin-dium reagents, are prepared from allenylpalladium intermediates. These reactions are discussed in appropriate sections of this chapter. This section covers the reactions of allenylpalladium compounds without further transmetallation. Allenylpalladium complexes can be prepared from propargylic halides, acetates, carbonates, mesylates, alcohols and certain alkynes [83-87], The allenylpalladium compound prepared from 3-chloro-3-methyl-l-butyne has been isolated and characterized spectroscopically (Eq. 9.106) [83], It was found to couple with organozinc chlorides to produce homologated allenes quantitatively (Eq. 9.107). [Pg.558]

Michael acceptors and other activated alkenic double bonds can play the role of electrophilic components in the cyclization of piperidine derivatives to quinolizidines. For example, base-induced )S-elimination of the mesylated alcohol (198) gave the epilupinine precursor (199) (Scheme 35)... [Pg.537]

It is used as a catalyst in esterification, dehydration, polymerization and alkylation reactions. Converted by e.g., ihionyl chloride, to melhanesulphonyl chloride (mesyl chloride) which is useful for characterizing alcohols, amines, etc. as melhanesulphonyl (mesyl) derivatives. [Pg.258]

Replacement of a primary or secondary hydroxyl function with deuterium is usually carried out by first converting the alcohol into a mesylate or tosylate ester, which can then be displaced by treatment with lithium aluminum deuteride. The... [Pg.196]

The use of mesyl chloride for the dehydration of C-11 alcohols has already been mentioned, and mesylates can certainly be intermediates at least in the a-series. The preference for a coplanar trans arrangement is demonstrated by the well-known elimination reactions of tosylates of epimeric 20-alcohols (ref. 185, p. 616), although this does not restrict the usefulness of the reaction, and in some cases (sulfonates of 1 la-alcohols, for example) cw-elimination occurs (ref. 216, p. 293 ref. 224, 225, 226). [Pg.329]

Dimethyl sulfoxide (DMSO) has been used to effect the elimination of sulfonates at elevated temperatures (see, for example, ref. 237). Benzene-sulfonates are recommended. The elimination of a variety of sulfonates proceeds readily in this medium in the presence of potassium /-butoxide. A -Compounds have been formed at 100°, but heating is not necessary. The effects of temperature change, orientation of the hydroxy group and changes in the sulfonate employed have been examined. The principal side reaction appears to be formation of the original alcohol (uninverted), particularly with equatorial mesylates at low temperatures it is minimized with axial tosylates. [Pg.331]

The azido alcohol is dissolved in a minimal amount of dry pyridine and cooled in an ice bath. Methanesulfonyl chloride (1 ml/g of azido alcohol) is added to the cold solution. The reaction mixture is allowed to stand at 0° for 24 to 72 hr. The reaction mixture is processed by pouring into ice water and either filtering the product, if possible, or by extraction with an organic solvent. Methanol or methanol-ether have been used to recrystallize the crude azido mesylates. [Pg.35]

In contrast to phosphorus esters, sulfur esters are usually cleaved at the carbon-oxygen bond with carbon-fluorine bond formation Cleavage of esteri nf methanesulfonic acid, p-toluenesidfonic acid, and especially trifluoromethane-sulfonic acid (tnflic acid) by fluoride ion is the most widely used method for the conversion of hydroxy compounds to fluoro derivatives Potassium fluoride, triethylamine trihydrofluoride, and tetrabutylammonium fluoride are common sources of the fluoride ion For the cleavage of a variety of alkyl mesylates and tosylates with potassium fluoride, polyethylene glycol 400 is a solvent of choice, the yields are limited by solvolysis of the leaving group by the solvent, but this phenomenon is controlled by bulky substituents, either in the sulfonic acid part or in the alcohol part of the ester [42] (equation 29)... [Pg.211]

A one-pot conversion of benzyl alcohols to benzyl fluorides by treatment of the alcohols with a combination of methanesulfonyl fluoride, cesium fluoride and 18-crown 6 ether in tetrahydrofuran has been repotted The reaction involves mesylation of the alcohols followed by cleavage of the resultant mesyl esters with a fluoride ion The reaction has been extended also to certain heterocycles bearing the N hydroxymethyl group [43] (equation 31)... [Pg.212]

Mesylates and tosylates may be used as variants of the 0-sulfate ester. For instance, 55% of aziridine 7 was obtained from base-mediated cyclization of amino mesylate 6. In comparison, the classic Wenker protocol only gave 3% of 7. In another instance, A-tosyl amino alcohol 8 was tosylated to give 9, which was transformed to aziridine 10 in 64% yield, along with 29% of the P-elimination product due to the presence of the ester moiety. Likewise, aziridine 12 was assembled from tosylate 11 in two steps and 60% yield. ... [Pg.64]

Activity is also retained when the hydroxyl group at the 21 position is replaced by chlorine. Reaction of corticoid 44 with methanesulfonyl chloride proceeds preferentially at the 21-hydroxyl (45) due to the hindered nature of the 11-alcohol. Replacement of the mesylate by means of lithium chloride in DMF affords clobetasol propionate (46) a similar sequence starting with the 17- butyrate ester 47, via mesylate 48, should give clobetasone butyrate, (49) [11]. [Pg.72]

In a similar vein, acylation of the corticoid 50 with furoyl chloride gives the diacyl derivative 51. Reduction with sodium borohydride serves to convert the 11-ketone to the alcohol 52. Hydrolysis under mild acid conditions preferentially removes the acyl group at the less hindered 21 position. The hydroxyl group in that derivative (53) is then converted to the mesylate 54. Replacement by chlorine affords mometasone (55) [12]. [Pg.73]

O-isopropylidene derivative (57) must exist in pyridine solution in a conformation which favors anhydro-ring formation rather than elimination. Considerable degradation occurred when the 5-iodo derivative (63) was treated with silver fluoride in pyridine (36). The products, which were isolated in small yield, were identified as thymine and l-[2-(5-methylfuryl)]-thymine (65). This same compound (65) was formed in high yield when the 5 -mesylate 64 was treated with potassium tert-hx Xy -ate in dimethyl sulfoxide (16). The formation of 65 from 63 or 64 clearly involves the rearrangement of an intermediate 2, 4 -diene. In a different approach to the problem of introducing terminal unsaturation into pento-furanoid nucleosides, Robins and co-workers (32,37) have employed mild base catalyzed E2 elimination reactions. Thus, treatment of the 5 -tosylate (59) with potassium tert-butylate in tert-butyl alcohol afforded a high yield of the 4 -ene (60) (37). This reaction may proceed via the 2,5 ... [Pg.141]

Intermediate 10 must now be molded into a form suitable for coupling with the anion derived from dithiane 9. To this end, a che-moselective reduction of the benzyl ester grouping in 10 with excess sodium borohydride in methanol takes place smoothly and provides primary alcohol 14. Treatment of 14 with methanesulfonyl chloride and triethylamine affords a primary mesylate which is subsequently converted into iodide 15 with sodium iodide in acetone. Exposure of 15 to tert-butyldimethylsilyl chloride and triethylamine accomplishes protection of the /Mactam nitrogen and leads to the formation of 8. Starting from L-aspartic acid (12), the overall yield of 8 is approximately 50%, and it is noteworthy that this reaction sequence can be performed on a molar scale. [Pg.253]

The present route to (terminal alkynes reported by a group from the Chemical Process Department at the DuPont Pharmaceutical Company.2 This alcohol serves as a convenient starting material for the preparation of 1-acyloxy 4-mesylates 10 (eq 1). [Pg.86]

These mesylates, in turn, can be converted to enantioenriched allenyltin, zinc, and indium reagents which add to aldehydes with excellent diastereo-and enantioselectivity to afford either syn- or anti-homopropargylic alcohols or allenylcarbinols (eq 2, 3, and 4).3 4 Adducts of this type serve as useful intermediates for the synthesis of polyketide and hydrofuran natural products.5... [Pg.86]

Transformation of bromocriptine free base 2 into water soluble salt -mesylate, is the only way to obtain a suitable therapeutical form. Crystallization of mesylate using alcohol as a solvent in the presence of excess of strong acid, e.g. methanesulphonic acid can induce formation of 12 -0-alkyl-derivative 2. Until now this derivatisation of ergot molecule has been practically unknown. In continuation we developed the preparative method for obtaining these compounds, (using tetrafluoroboric acid as a catalyst) (ref. 20). [Pg.82]

Although halides are common leaving groups in nucleophilic substitution for synthetic purposes, it is often more convenient to use alcohols. Since OH does not leave from ordinary alcohols, it must be converted to a group that does leave. One way is protonation, mentioned above. Another is conversion to a reactive ester, most commonly a sulfonic ester. The sulfonic ester groups tosylate, brosylate, nosylate, and mesylate are better leaving groups than... [Pg.446]

Quenching of the same lithiated species with CO2, followed by reduction of the carboxyUc acid functionality obtained with BH3-THF complex, yielded the next higher analogues 78 to these alcohols [94]. Subsequent treatment of the depro-tonated alcohols with TsCl or MsCl afforded (l )-l-boranato[alkyl(methyl)plios-phino] ethanol-2-tosylates or the mesylate phosphine-boranes in over 90% ee and excellent overall yields. [Pg.19]

Stereoinversion Stereoinversion can be achieved either using a chemoenzymatic approach or a purely biocatalytic method. As an example of the former case, deracemization of secondary alcohols via enzymatic hydrolysis of their acetates may be mentioned. Thus, after the first step, kinetic resolution of a racemate, the enantiomeric alcohol resulting from hydrolysis of the fast reacting enantiomer of the substrate is chemically transformed into an activated ester, for example, by mesylation. The mixture of both esters is then subjected to basic hydrolysis. Each hydrolysis proceeds with different stereochemistry - the acetate is hydrolyzed with retention of configuration due to the attack of the hydroxy anion on the carbonyl carbon, and the mesylate - with inversion as a result of the attack of the hydroxy anion on the stereogenic carbon atom. As a result, a single enantiomer of the secondary alcohol is obtained (Scheme 5.12) [8, 50a]. [Pg.105]


See other pages where Mesylates alcohols is mentioned: [Pg.81]    [Pg.449]    [Pg.22]    [Pg.110]    [Pg.378]    [Pg.31]    [Pg.105]    [Pg.161]    [Pg.249]    [Pg.113]    [Pg.201]    [Pg.415]    [Pg.719]    [Pg.45]    [Pg.470]    [Pg.478]    [Pg.708]    [Pg.69]    [Pg.223]    [Pg.320]    [Pg.942]    [Pg.216]    [Pg.1232]    [Pg.1233]   


SEARCH



Alcohol mesylation

Mesylate

Mesylation

© 2024 chempedia.info