Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes fast gases

Hydrogen Hydrogen recovery was the first large commercial membrane gas separation. Polysulfone fiber membranes became available in 1980 at a time when H9 needs were rising, and these novel membranes qiiickly came to dominate the market. Applications include recovery of H9 from ammonia purge gas, and extraction of H9 from petroleum crackiug streams. Hydrogen once diverted to low-quahty fuel use is now recovered to become ammonia, or is used to desulfurize fuel, etc. H9 is the fast gas. [Pg.2047]

Helium Helium is a veiy fast gas, and may be recovered from natural gas through the use of membranes. More commonly, membranes are used to recover He after it has been used and become diluted. [Pg.2047]

State of the Art A desirable gas membrane has high separating power (ot) and high permeability to the fast gas, in addition to critical requirements discussed below. The search for an ideal membrane produced copious data on many polymers, neatly summarized by Robeson [J. Membrane ScL, 62, 165 (1991)]. Plotting log permeability versus log selectivity (ot), an upper bound is found (see Fig. 22-73) which all the many hundreds of data points fit. The data were taken between 20-50°C, generally at 25 or 35°C. [Pg.2048]

Partial Pressure Pinch An example of the hmitations of the partial pressure pinch is the dehumidification of air by membrane. While O9 is the fast gas in air separation, in this apphcation H9O is faster still. Special dehydration membranes exhibit a = 20,000. As gas passes down the membrane, the pai-dal pressure of H9O drops rapidly in the feed. Since the H9O in the permeate is diluted only by the O9 and N9 permeating simultaneously, p oo rises rapidly in the permeate. Soon there is no driving force. The commercial solution is to take some of the diy air product and introduce it into the permeate side as a countercurrent sweep gas, to dilute the permeate and lower the H9O partial pressure. It is in effect the introduction of a leak into the membrane, but it is a controlled leak and it is introduced at the optimum position. [Pg.2050]

The more permeable component is called the fast gas, so it is the one enriched in the permeate stream. Permeabihly through polymers is the product of solubility and diffusivity. The diffusivity of a gas in a membrane is inversely proportional to its kinetic diameter, a value determined from zeolite cage exclusion data (see Table 20-26 after Breck, Zeolite Molecular Sieves, Wiley New York, 1974, p. 636). Tables 20-27, 20-28, and 20-29 provide units conversion factors useful for calculations related to gas-separation membrane systems. [Pg.57]

Product Losses Account must be taken of the product loss, the slow gas in the permeate (such as CH4), or the fast gas in the residue (such as H2). Figure 22-79 illustrates the issue for a membrane used to purify natural gas from 93 percent to pipeline quality, 98 percent. In the upper figure, the gas is run through a permeator bank operating as a single stage. For the membrane and module chosen, the permeate contains 63 percent CH4. By dividing the same membrane area into... [Pg.1810]

When hydrophobic membranes are used (olefins are preferred because of their low cost), the aqueous absorbent cannot penetrate through the pores and the membrane is gas filled whereas if hydrophilic membranes are employed, the membrane is liquid filled (Figures 38.1 and 38.2). Latter situation is preferred only if the reaction between the gaseous species and the absorbent solution is fast or instantaneous if not, it is better to work with a gas-filled membrane, to reduce mass-transfer resistances. The module design and flow configuration also play an important role in defining the membrane contactors efficiency. This aspect is discussed in detail in Section 38.5. [Pg.1042]

Gas separation by membranes will always have to compete with other separation processes such as cryogenics, absorption and adsorption systems. Membranes usually are less competitive in very large scale operations where the fast gas is less than about 20% of the feed gas, unless the slow gas is the desired product. Membranes also are not usually the method of choice when extremely pure product gas is required. Membranes do, however, have distinct advantages in small to medium scale operations, in situations where gas is available at pressure, in situations where high recovery is paramount, and in applications where simplicity and minimal maintenance are of prime importance (such as in remote locations). Membranes are very well suited for applications in which the non-permeate is the product of interest, since it is obtained at pressure. Examples are acid gas removal from natural gas and gas dehydration. [Pg.574]


See other pages where Membranes fast gases is mentioned: [Pg.2048]    [Pg.2050]    [Pg.2052]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.265]    [Pg.96]    [Pg.226]    [Pg.1806]    [Pg.1808]    [Pg.84]    [Pg.170]    [Pg.2213]    [Pg.2215]    [Pg.2217]    [Pg.919]    [Pg.919]    [Pg.936]    [Pg.937]    [Pg.937]    [Pg.940]    [Pg.943]    [Pg.2197]    [Pg.2199]   
See also in sourсe #XX -- [ Pg.195 , Pg.265 ]




SEARCH



Membrane gases

Membrane separation fast gases

© 2024 chempedia.info