Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane proteins hydrophobicity

In subsequent studies attempting to find a correlation of physicochemical properties and antimicrobial activity, other parameters have been employed, such as Hammett O values, electronic distribution calculated by molecular orbital methods, spectral characteristics, and hydrophobicity constants. No new insight on the role of physiochemical properties of the sulfonamides has resulted. Acid dissociation appears to play a predominant role, since it affects aqueous solubiUty, partition coefficient and transport across membranes, protein binding, tubular secretion, and reabsorption in the kidneys. An exhaustive discussion of these studies has been provided (10). [Pg.467]

Aqueous-detergent solutions of appropriate concentration and temperature can phase separate to form two phases, one rich in detergents, possibly in the form of micelles, and the other depleted of the detergent (Piyde and Phillips, op. cit.). Proteins distribute between the two phases, hydrophobic (e.g., membrane) proteins reporting to the detergent-rich phase and hydrophilic proteins to the detergent-free phase. Indications are that the size-exclusion properties of these systems can also be exploited for viral separations. These systems would be handled in the same way as the aqueous two-phase systems. [Pg.2061]

Figure 12.2 (a) Schematic drawing of membrane proteins in a typical membrane and their solubilization by detergents. The hydrophilic surfaces of the membrane proteins are indicated by red. (b) A membrane protein crystallized with detergents bound to its hydrophobic protein surface. The hydrophilic surfaces of the proteins and the symbols for detergents are as in (a). (Adapted from H. Michel, Trends Biochem. Sci. 8 56-59, 1983.)... [Pg.225]

Gram-negative bacteria are surrounded by two membranes, an inner plasma membrane and an outer membrane. These are separated by a periplasmic space. Most plasma membrane proteins contain long, continuous sequences of about 20 hydrophobic residues that are typical of transmembrane a helices such as those found in bacteriorhodopsin. In contrast, most outer membrane proteins do not show such sequence patterns. [Pg.228]

Rees, D.C., DeAntonio, L., Eisenberg, D. Hydrophobic organization of membrane proteins. Science 245 510-513, 1989. [Pg.249]

Ionic interactions between solutes and Superose are negligible at ionic strengths above 50 mM. However, some hydrophobic interactions have been observed with small hydrophobic peptides, membrane proteins, and lipopro-... [Pg.48]

With a knowledge of the methodology in hand, let s review the results of amino acid composition and sequence studies on proteins. Table 5.8 lists the relative frequencies of the amino acids in various proteins. It is very unusual for a globular protein to have an amino acid composition that deviates substantially from these values. Apparently, these abundances reflect a distribution of amino acid polarities that is optimal for protein stability in an aqueous milieu. Membrane proteins have relatively more hydrophobic and fewer ionic amino acids, a condition consistent with their location. Fibrous proteins may show compositions that are atypical with respect to these norms, indicating an underlying relationship between the composition and the structure of these proteins. [Pg.142]

Why should the cores of most globular and membrane proteins consist almost entirely of a-helices and /3-sheets The reason is that the highly polar N—H and C=0 moieties of the peptide backbone must be neutralized in the hydrophobic core of the protein. The extensively H-bonded nature of a-helices and /3-sheets is ideal for this purpose, and these structures effectively stabilize the polar groups of the peptide backbone in the protein core. [Pg.181]

ATP synthase actually consists of two principal complexes. The spheres observed in electron micrographs make up the Fj unit, which catalyzes ATP synthesis. These Fj spheres are attached to an integral membrane protein aggregate called the Fq unit. Fj consists of five polypeptide chains named a, j3, y, 8, and e, with a subunit stoichiometry ajjSaySe (Table 21.3). Fq consists of three hydrophobic subunits denoted by a, b, and c, with an apparent stoichiometry of ajbgCg.ig- Fq forms the transmembrane pore or channel through which protons move to drive ATP synthesis. The a, j3, y, 8, and e subunits of Fj contain 510, 482, 272, 146, and 50 amino acids, respectively, with a total molecular mass... [Pg.694]

Rieske proteins are constituents of the be complexes that are hydro-quinone-oxidizing multisubunit membrane proteins. All be complexes, that is, bci complexes in mitochondria and bacteria, b f complexes in chloroplasts, and corresponding complexes in menaquinone-oxidizing bacteria, contain three subunits cytochrome b (cytochrome 6e in b f complexes), cytochrome Ci (cytochrome f in b(,f complexes), and the Rieske iron sulfur protein. Cytochrome 6 is a membrane protein, whereas the Rieske protein, cytochrome Ci, and cytochrome f consist of water-soluble catalytic domains that are bound to cytochrome b through a membrane anchor. In Rieske proteins, the membrane anchor can be identified as an N-terminal hydrophobic sequence (13). [Pg.86]

The pecM gene encodes a protein of 297 amino acids with a calculated molecular mass of 32 kDa. The predicted PecM protein displays the characteristics of an integral membrane protein since it is largely hydrophobic, with potential trans-membrane domains. SubceUular firactionation confirmed that PecM is anchored into the bacterial inner membrane whereas PecS is... [Pg.325]


See other pages where Membrane proteins hydrophobicity is mentioned: [Pg.55]    [Pg.55]    [Pg.532]    [Pg.1079]    [Pg.205]    [Pg.210]    [Pg.2063]    [Pg.224]    [Pg.225]    [Pg.226]    [Pg.231]    [Pg.248]    [Pg.1079]    [Pg.12]    [Pg.115]    [Pg.116]    [Pg.264]    [Pg.271]    [Pg.271]    [Pg.272]    [Pg.272]    [Pg.272]    [Pg.297]    [Pg.300]    [Pg.315]    [Pg.714]    [Pg.651]    [Pg.749]    [Pg.1019]    [Pg.118]    [Pg.417]    [Pg.419]    [Pg.420]    [Pg.83]    [Pg.122]    [Pg.138]    [Pg.81]    [Pg.642]   
See also in sourсe #XX -- [ Pg.48 , Pg.49 , Pg.481 ]




SEARCH



Hydrophobic domains, membrane protein

Hydrophobic mismatch, membrane-protein

Hydrophobic mismatch, membrane-protein interactions

Hydrophobic proteins

Membrane hydrophobic

Membrane hydrophobicity

© 2024 chempedia.info