Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane permeability and partitioning

Dithiocarbamates and xanthates form particularly stable, neutral complexes with Cu(II), Cd(II) (and also Ni, Hg, Pb), which are membrane permeable and increase the apparent bioaccumulation of these metals [13]. In the series of sulfoxine, oxine, and chloroxine, the hydrophobicity of the neutral and the charged form, as well as of the Cu complex, increases. While the sulfoxine is not hydrophobic and does not modulate copper toxicity [220], the Cu-oxine complex is hydrophobic with an octanol-water partition constant, log Kok, of 1.7 [221] or 2.6 [222]. Chloroxine can be assumed to be even more hydrophobic, but so far its influence on uptake and toxicity has not been investigated. Uptake of Cu2+ into unilamellar liposomes was increased in the presence of 8-hydroxy-chinoline, and decreased again after adding HA [223],... [Pg.246]

Several factors originating from the chemical structure and property of the drug molecule, and from the physiology within the environment in the GI tract, affect the flow of molecules across the intestinal membrane. These factors include solubility, partition coefficient, pffa, molecular weight, molecular volume, aggregate, particle size, pH in the lumen and at the surface of the membrane, GI secretions, absorptive surface area, blood flow, membrane permeability and enzymes (for more factors, see Ungell 1997, and Table 4.8). Complete absorption occurs when the drug has a maximum permeability coefficient and maximum solubility at the site of absorption (Pade and Stavchansky 1998). [Pg.117]

Physiologically Based Phamiacokinetic (PBPK) Model—Comprised of a series of compartments representing organs or tissue groups with realistic weights and blood flows. These models require a variety of physiological information tissue volumes, blood flow rates to tissues, cardiac output, alveolar ventilation rates and, possibly membrane permeabilities. The models also utilize biochemical information such as air/blood partition coefficients, and metabolic parameters. PBPK models are also called biologically based tissue dosimetry models. [Pg.245]

Octanol-water partition (log P) and distribution (log D) coefficients are widely used to make estimates for membrane penetration and permeability, including gastrointestinal absorption [77, 78], BBB crossing [60, 69] and correlations to pharmacokinetic properties [1]. The two major components of lipophilicity are molecular size and H-bonding [57], which each have been discussed above (see Sections 2.5 and 2.6). [Pg.35]

I mmobili zed-artifidal-membrane chromatography measurements of membrane partition coeffident and predicting drug membrane permeability. /. Chromatogr. A. 1996, 728,113-128. [Pg.48]

Lipophilicity is intuitively felt to be a key parameter in predicting and interpreting permeability and thus the number of types of lipophilicity systems under study has grown enormously over the years to increase the chances of finding good mimics of biomembrane models. However, the relationship between lipophilicity descriptors and the membrane permeation process is not clear. Membrane permeation is due to two main components the partition rate constant between the lipid leaflet and the aqueous environment and the flip-flop rate constant between the two lipid leaflets in the bilayer [13]. Since the flip-flop is supposed to be rate limiting in the permeation process, permeation is determined by the partition coefficient between the lipid and the aqueous phase (which can easily be determined by log D) and the flip-flop rate constant, which may or may not depend on lipophilicity and if it does so depend, on which lipophilicity scale should it be based ... [Pg.325]

Two hypotheses have been proposed to explain how phenolic acids directly increase membrane permeability. The first is that the compounds solubilize into cellular membranes, and thus cause a "loosening" of the membrane structure so that minerals can leak across the membrane (28-30, 42). Support for this hypothesis comes from the fact that the extent of inhibition of electrical potentials correlates with the log P (partition coefficient of a compound between octanol and water) for various benzoic and cinnamic acid derivatives (Figure 5). [Pg.173]

With the exception of rather small polar molecules, the majority of compounds, including drugs, appear to penetrate biological membranes via a lipid route. As a result, the membrane permeability of most compounds is dependent on K0/w. The physicochemical interpretation of this general relationship is based on the atomic and molecular forces to which the solute molecules are exposed in the aqueous and lipid phases. Thus, the ability of a compound to partition from an aqueous to a lipid phase of a membrane involves the balance between solute-water and solute-membrane intermolecular forces. If the attractive forces of the solute-water interaction are greater than those of the solute-membrane interaction, membrane permeability will be relatively poor and vice versa. In examining the permeability of a homologous series of compounds... [Pg.41]

The membrane permeabilities Pm may be converted to intrinsic permeabilities P(h when the pKa is taken into consideration. An ionizable molecule exhibits its intrinsic permeability when it is in its uncharged form and there is no water layer resistance. The relationship between Pm and P0 is like that between the pH-dependent apparent partition coefficient (log Kd) and the true partition coefficient (log Kp), respectively. This relationship can be rationalized by the mass balance. Take, for example, the case of a monoprotic acid, HA. The total substance concentration is... [Pg.200]


See other pages where Membrane permeability and partitioning is mentioned: [Pg.174]    [Pg.375]    [Pg.383]    [Pg.2140]    [Pg.123]    [Pg.174]    [Pg.375]    [Pg.383]    [Pg.2140]    [Pg.123]    [Pg.827]    [Pg.535]    [Pg.87]    [Pg.136]    [Pg.364]    [Pg.46]    [Pg.142]    [Pg.251]    [Pg.340]    [Pg.1408]    [Pg.247]    [Pg.1345]    [Pg.251]    [Pg.128]    [Pg.211]    [Pg.180]    [Pg.674]    [Pg.832]    [Pg.1026]    [Pg.167]    [Pg.2054]    [Pg.256]    [Pg.147]    [Pg.77]    [Pg.48]    [Pg.816]    [Pg.819]    [Pg.820]    [Pg.281]    [Pg.7]    [Pg.137]    [Pg.152]    [Pg.179]   
See also in sourсe #XX -- [ Pg.375 , Pg.383 ]




SEARCH



Membrane partitioning

Membrane partitions

Membranes, permeable

Permeability and

© 2024 chempedia.info