Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Medicine automation

Automated methods are more rehable and much more precise than the average manual method dependence on the technique of the individual technologist is eliminated. The relative precision, or repeatabiUty, measured by the consistency of the results of repeated analyses performed on the same sample, ranges between 1% and 5% on automated analy2ers. The accuracy of an assay, defined as the closeness of the result or of the mean of repHcate measurements to the tme or expected value (4), is also of importance in clinical medicine. [Pg.392]

Figure 4.4 The general protocol for information extraction from an herbal text (A-E) is paired with case examples from our work with the Ambonese Herbal by Rumphius. (A) Text is digitized. (B) Through either manual reading or automated extraction the plant name(s), plant part(s), and symptoms or disorders are identified. (C) These extracted data are then updated (as necessary) to reflect current names of the plants, using the International Plant Names Index (IPNI), and the pharmacological function(s) of the described medicinal plants are extrapolated from the mentioned symptoms and disorders. (D) The current botanical names are queried against a natural products database such as the NAPRALERT database to determine whether the plant has been previously examined. (E) Differential tables are generated that separate the plants examined in the literature from plants that may warrant further examination for bioactivity. (Adapted from Trends in Pharmacological Sciences, with permission.) See color plate. Figure 4.4 The general protocol for information extraction from an herbal text (A-E) is paired with case examples from our work with the Ambonese Herbal by Rumphius. (A) Text is digitized. (B) Through either manual reading or automated extraction the plant name(s), plant part(s), and symptoms or disorders are identified. (C) These extracted data are then updated (as necessary) to reflect current names of the plants, using the International Plant Names Index (IPNI), and the pharmacological function(s) of the described medicinal plants are extrapolated from the mentioned symptoms and disorders. (D) The current botanical names are queried against a natural products database such as the NAPRALERT database to determine whether the plant has been previously examined. (E) Differential tables are generated that separate the plants examined in the literature from plants that may warrant further examination for bioactivity. (Adapted from Trends in Pharmacological Sciences, with permission.) See color plate.
Smaller companies tend to have fewer concerns around, for example, system scalability, global WAN performance, and complex systems integration. They are rather more driven by the pure functionality of the ELN that is addressing the specific scientific disciplines of interest. Key drivers in this sector of the market have been medicinal chemistry departments, where the obvious benefits of searching existing reactions by substructure and reaction transformations, the ability to automate stoichiometry calculations, the ability to load spectral information, etc. have made for easy adoption and clear and realizable benefits. [Pg.221]

Web in the life of the medicinal chemist. One may see the development of alerting services for the primary medicinal chemistry journals. The Web-based information search process could be replaced by a much more structured one based on metadata, derived by automated processing of the original full-text article. To discover new and potentially interesting articles, the user subscribes to the RSS feeds of relevant publishers and can simply search the latest items that appear automatically for keywords of interest. The article download is still necessary, but it may be possible for the client software to automatically invoke bibliographic tools to store the found references. Another application of the Chemical Semantic Web may be as alerting services for new additions to chemical databases where users get alerts for the new additions of structures or reactions. [Pg.305]

In the current era many medicinal chemists are unaware of the very important role of compound soUd state properties on aqueous solubility and therefore to oral absorption. In many organizations compound purification by crystallization has disappeared being replaced by automated reverse-phase HPLC purification. If medicinal chemists isolate a compound as a white powder from evaporation of... [Pg.270]

Visual inspechon frequently cannot differenhate between an amorphous or crystalline material, e.g. at Pfizer medicinal chemists were required to submit only crystalline and not amorphous compounds to an automated thermodynamic solubility assay. In prachce half the white powders that they produced for the assay and that they thought were crystalline were actually amorphous. Prior to 2000 the vast majority of these medicinal chemistry labs had no melting point equipment and it was only in 2000 that the pharmaceuhcal sciences department started a workshop to teach medicinal chemists the importance of solid state properhes, how to crystallize compounds and the importance of salt forms. [Pg.271]

Parallel processing of synthetic operations has been one of the cornerstones of medicinal and high-throughput synthesis for years. In the parallel synthesis of compound libraries, compounds are synthesized using ordered arrays of spatially separated reaction vessels adhering to the traditional one vessel/one compound philosophy. The defined location of the compound in the array provides the structure of the compound. A commonly used format for parallel synthesis is the 96-well microtiter plate, and today combinatorial libraries comprising hundreds to thousands of compounds can be synthesized by parallel synthesis, often in an automated fashion. [Pg.74]

The determination of quantity in complex mixtures is also vital in health care and medicine. We are all familiar with the medical examinations in which a sample of blood or urine is sent to a laboratory for analysis. The procedures used have been developed by chemists, and are performed by trained chemical technicians. The high level of automation achieved by the chemists who designed these analytical procedures has greatly reduced the costs of such analyses. Clinical analysis continues to be driven by a need for better methods to detect and measure important proteins, for example, that while present in tiny amounts are relevant to our health and well-being. [Pg.56]

Voloshyn V. A., Terentyeva A. V., Terentyev A. V. Modem directions of development of the automated control systems by government service of medicine of catastrophes // Announcer of social hygiene and organization of health protection of Ukraine. - 2000. -N°3. - P. 37-40... [Pg.169]

Solid-supported technologies are already well established methods in medicinal chemistry and automated synthesis. Over the last couple of years new trends have evolved in this field which are of utmost importance as they have the potential to revolutionize the way chemical synthesis especially for library production is performed. Microchip-based synthesis technologies and multistep sequences with solid-supported catalysts or reagents in flow-through systems are only two spectacular examples. A new approach is the use of solid-supported systems for the scale-up of chemical reactions thereby enabling the rapid and smooth transition from discovery to development units. [Pg.247]


See other pages where Medicine automation is mentioned: [Pg.2040]    [Pg.2040]    [Pg.530]    [Pg.364]    [Pg.6]    [Pg.33]    [Pg.308]    [Pg.309]    [Pg.309]    [Pg.34]    [Pg.513]    [Pg.194]    [Pg.103]    [Pg.263]    [Pg.272]    [Pg.328]    [Pg.2]    [Pg.757]    [Pg.12]    [Pg.769]    [Pg.51]    [Pg.267]    [Pg.2]    [Pg.74]    [Pg.232]    [Pg.127]    [Pg.274]    [Pg.68]    [Pg.166]    [Pg.134]    [Pg.605]    [Pg.141]    [Pg.299]    [Pg.339]    [Pg.237]    [Pg.4]    [Pg.422]    [Pg.70]    [Pg.76]    [Pg.85]    [Pg.549]    [Pg.604]   
See also in sourсe #XX -- [ Pg.274 ]




SEARCH



© 2024 chempedia.info