Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical testing stress-strain curves

The mechanical properties were obtained using a tensile machine at room temperature and for a strain rate of 1000%/h. Each reported value of the modulus was an average of five tests. The tensile modulus Et was taken as the slope of the initial straight line portion of the stress-strain curve. [Pg.692]

One of the most informative properties of any material is their mechanical behavior specifically the determination of its stress-strain curve in tension (ASTM D 638). This is usually accomplished in a testing machine by measuring continuously the elongation (strain) in a test sample as it is stretched by an... [Pg.45]

The mechanical response of polypropylene foam was studied over a wide range of strain rates and the linear and non-linear viscoelastic behaviour was analysed. The material was tested in creep and dynamic mechanical experiments and a correlation between strain rate effects and viscoelastic properties of the foam was obtained using viscoelasticity theory and separating strain and time effects. A scheme for the prediction of the stress-strain curve at any strain rate was developed in which a strain rate-dependent scaling factor was introduced. An energy absorption diagram was constructed. 14 refs. [Pg.46]

PP bead foams of a range of densities were compressed using impact and creep loading in an Instron test machine. The stress-strain curves were analysed to determine the effective cell gas pressure as a function of time under load. Creep was controlled by the polymer linear viscoelastic response if the applied stress was low but, at stresses above the foam yield stress, the creep was more rapid until compressed cell gas took the majority of the load. Air was lost from the cells by diffusion through the cell faces, this creep mechanism being more rapid than in extruded foams, because of the small bead size and the open channels at the bead bonndaries. The foam permeability to air conld be related to the PP permeability and the foam density. 15 refs. [Pg.81]

Figure 5.112 Idealized stress-strain curve for a tough ceramic-matrix composite. Reprinted, by permission, from R. W. Davidge and 1. J. R. Davies, in Mechanical Testing of Engineering Ceramics at High Temperatures, B. F. Dyson, R. D. Lohr, and R. Morrell, eds., p. 251. Copyright 1989 by Elsevier Science Publishers, Ltd. Figure 5.112 Idealized stress-strain curve for a tough ceramic-matrix composite. Reprinted, by permission, from R. W. Davidge and 1. J. R. Davies, in Mechanical Testing of Engineering Ceramics at High Temperatures, B. F. Dyson, R. D. Lohr, and R. Morrell, eds., p. 251. Copyright 1989 by Elsevier Science Publishers, Ltd.
Mechanical Properties of Cast Resins. The toughness of the cross-linked polymers was determined by the area under the stress-strain curve and by the energy required to fracture. The fracture or impact energy, expressed in inch-pounds, was measured by a simple but reliable test— the Gardner impact—which consists of striking cured specimens with a 2-lb round-nose rod, %-inch in diameter, from various distances the test specimens were discs 0.1 inch thick by 2.0 inches in diameter. [Pg.543]

Mechanical tests were carried out with an Instron 1123 mechanical test machine operated at a crosshead speed of 2 mm/min. Moduli were determined using rectangular bar specimens that were pulled in tension using an extensometer to obtain accurate strain measurements. Initial slopes of the stress-strain curves represent the moduli. Strength measurements were made using ASTM Type V tensile bars (cut after the composites were produced) that were pulled in tension, and the maximum tensile stresses attained were taken as the strength values. [Pg.167]

Figure 7.7. Total, elastic, and viscous stress-strain curves for uncrosslinked self-assembled type I collagen fibers.Total (open squares), elastic (filled diamonds), and viscous (filled squares) stress-strain curves for self-assembled uncrosslinked collagen fibers obtained from incremental stress-strain measurements at a strain rate of 10%/min. The fibers were tested immediately after manufacture and were not aged at room temperature. Error bars represent one standard deviation of the mean value for total and viscous stress components. Standard deviations for the elastic stress components are similar to those shown for the total stress but are omitted to present a clearer plot. The straight line for the elastic stress-strain curve closely overlaps the line for the viscous stress-strain curve. Note that the viscous stress-strain curve is above the elastic curve suggesting that viscous sliding is the predominant energy absorbing mechanism for uncrosslinked collagen fibers. Figure 7.7. Total, elastic, and viscous stress-strain curves for uncrosslinked self-assembled type I collagen fibers.Total (open squares), elastic (filled diamonds), and viscous (filled squares) stress-strain curves for self-assembled uncrosslinked collagen fibers obtained from incremental stress-strain measurements at a strain rate of 10%/min. The fibers were tested immediately after manufacture and were not aged at room temperature. Error bars represent one standard deviation of the mean value for total and viscous stress components. Standard deviations for the elastic stress components are similar to those shown for the total stress but are omitted to present a clearer plot. The straight line for the elastic stress-strain curve closely overlaps the line for the viscous stress-strain curve. Note that the viscous stress-strain curve is above the elastic curve suggesting that viscous sliding is the predominant energy absorbing mechanism for uncrosslinked collagen fibers.
Tensile stress-strain curves were generated using an electro-mechanical universal testing machine with specially designed flat-ended fixtures that were machined in order the grip the specimens carefully. All the samples were tested for failure under displacement control with a prescribed displacement rate of 1.5 mm min-1. Fractography of the tested samples was carried out using a SIRION field emission SEM. [Pg.589]

The mechanical properties were evaluated by two sets of tensile measurements. Typical stress-strain curves are shown in Figure 4. The modulus and stress decrease with increasing aging time. Similar results are observed for all aging samples at all three temperatures. Both testing methods provided essentially the same tensile data at 400% extension. The scatter of the tensile data is due to the experimental error associated with the measurement. [Pg.211]

Stress-strain tests were mentioned on page 24 and in Fig. 11-12. In such a tensile lest a parallel-sided strip is held in two clamps that are separated at aconstant speed, and the force needed to effect this is recorded as a function of clamp separation. The test specimens are usually dogbone shaped to promote deformation between the clamps and deter flow in the clamped portions of the material. The load-elongation data are converted to a stress-strain curve using the relations mentioned on p. 24. These are probably the most widely used of all mechanical tests on polymers. They provide useful information on the behavior of isotropic specimens, but their... [Pg.419]

The most common type of stress-strain tests is that in which the response (strain) of a sample subjected to a force that increases with time, at constant rate, is measured. The shape of the stress-strain curves is used to define ductile and brittle behavior. Since the mechanical properties of polymers depend on both temperature and observation time, the shape of the stress-strain curves changes with the strain rate and temperature. Figure 14.1 illustrates different types of stress-strain curves. The curves for hard and brittle polymers (Fig. 14.1a) show that the stress increases more or less linearly with the strain. This behavior is characteristic of amorphous poly-... [Pg.582]

Figure 14.8 shows stress-strain curves for polycarbonate at 77 K obtained in tension and in uniaxial compression (12), where it can be seen that the yield stress differs in these two tests. In general, for polymers the compressive yield stress is higher than the tensile yield stress, as Figure 14.8 shows for polycarbonate. Also, yield stress increases significantly with hydrostatic pressure on polymers, though the Tresca and von Mises criteria predict that the yield stress measured in uniaxial tension is the same as that measured in compression. The differences observed between the behavior of polymers in uniaxial compression and in uniaxial tension are due to the fact that these materials are mostly van der Waals solids. Therefore it is not surprising that their mechanical properties are subject to hydrostatic pressure effects. It is possible to modify the yield criteria described in the previous section to take into account the pressure dependence. Thus, Xy in Eq. (14.10) can be expressed as a function of hydrostatic pressure P as... [Pg.594]

Abstract The effects of the amount of rubber, the concentration of fibres and the state of the fibre/matrix interface upon the mechanical behaviour of short glass fibre-reinforced rubber-toughened nylon 6 ternary blends are described. First, tensile tests were carried out on different intermediate materials and then on the ternary blends to derive the stress-strain curves and document the damage mechanisms. Fracture toughness tests were implemented on compact tension specimens and the results were correlated to fractographic observations and acoustic emission analysis to assess the role of the different constituents. [Pg.399]


See other pages where Mechanical testing stress-strain curves is mentioned: [Pg.306]    [Pg.248]    [Pg.277]    [Pg.153]    [Pg.298]    [Pg.351]    [Pg.119]    [Pg.469]    [Pg.520]    [Pg.114]    [Pg.153]    [Pg.1165]    [Pg.13]    [Pg.15]    [Pg.19]    [Pg.210]    [Pg.117]    [Pg.346]    [Pg.174]    [Pg.176]    [Pg.196]    [Pg.132]    [Pg.638]    [Pg.431]    [Pg.385]    [Pg.347]    [Pg.122]    [Pg.292]    [Pg.432]    [Pg.436]    [Pg.584]    [Pg.232]    [Pg.328]    [Pg.1736]   
See also in sourсe #XX -- [ Pg.513 ]




SEARCH



Mechanical stressing

Mechanical testing

Mechanical tests

Strain mechanics

Stress curves

Stress mechanics

Stress mechanisms

Stress strain test

Stress testing

Stress tests

Stress tests testing

Stress-strain curves

Stressing Mechanisms

Testing stress-strain curves

© 2024 chempedia.info