Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene mechanical properties

Regarding mechanical properties of polymers, the efficiency of the Car-Parrinello approach has enabled us to evaluate the ultimate Young s modulus of orthorhombic polyethylene, and demonstrate basis set convergence for that property. [Pg.440]

Table 2. Effects of Molecular Weight and Branching on Mechanical Properties of Polyethylenes... Table 2. Effects of Molecular Weight and Branching on Mechanical Properties of Polyethylenes...
Linear polyethylene (high density) was introduced in the late 1950s, with the development of coordination catalysts. Chlorosulfonation of these base resins gave products that were superior to the eadier, low density types in both chemical resistance and mechanical properties and with distinct advantages in mbber processibiUty (6,7). [Pg.490]

Polymers used for seat and plug seals and internal static seals include PTFE (polytetrafluoroeth ene) and other fluorocarbons, polyethylene, nylon, polyether-ether-ketone, and acetal. Fluorocarbons are often carbon or glass-filled to improve mechanical properties and heat resistance. Temperature and chemical compatibility with the process fluid are the key selec tion criteria. Polymer-lined bearings and guides are used to decrease fric tion, which lessens dead band and reduces actuator force requirements. See Sec. 28, Materials of Construction, for properties. [Pg.790]

Polyethylene is the lowest-cost plastic commercially available. Mechanical properties are generally poor, particularly above 50°C (120°F), ana pipe must be hilly supported. Carbon-filled grades are resistant to sunlight and weathering. [Pg.2457]

Chlorosulfouated polyethylene (Hypalou) 250 Excellent resistance to oxidizing chemicals, ozone, weathering. Relatively good resistance to oils, grease. Poor resistance to aromatic or chlorinated hydrocarbons. Good mechanical properties. [Pg.2474]

As we saw in the first chapter, polymers have become important engineering materials. They are much more complex structurally than metals, and because of this they have very special mechanical properties. The extreme elasticity of a rubber band is one the formability of polyethylene is another. [Pg.51]

In the case of commercial crystalline polymers wider differences are to be noted. Many polyethylenes have a yield strength below 20001bf/in (14 MPa) whilst the nylons may have a value of 12 000 Ibf/in (83 MPa). In these polymers the intermolecular attraction, the molecular weight and the type and amount of crystalline structure all influence the mechanical properties. [Pg.74]

The chemical resistance of polyethylene is, to a large measure, that expected of an alkane. It is not chemically attacked by non-oxidising acids, alkalis and many aqueous solutions. Nitric acid oxidises the polymer, leading to a rise in power factor and to a deterioration in mechanical properties. As with the simple alkanes, halogens combine with the hydrocarbon by means of substitution mechanisms. [Pg.223]

Polyethylene and polypropylene are semitransparent plastics made by polymerization. They are produced from ethylene and propylene in a variety of grades. Their mechanical properties are determined mainly by density (degree of crystallinity) and molecular weight, characterized by the Melt Index (MI). [Pg.105]

An important subdivision within the thermoplastic group of materials is related to whether they have a crystalline (ordered) or an amorphous (random) structure. In practice, of course, it is not possible for a moulded plastic to have a completely crystalline structure due to the complex physical nature of the molecular chains (see Appendix A). Some plastics, such as polyethylene and nylon, can achieve a high degree of crystallinity but they are probably more accurately described as partially crystalline or semi-crystalline. Other plastics such as acrylic and polystyrene are always amorphous. The presence of crystallinity in those plastics capable of crystallising is very dependent on their thermal history and hence on the processing conditions used to produce the moulded article. In turn, the mechanical properties of the moulding are very sensitive to whether or not the plastic possesses crystallinity. [Pg.4]

Compatibility and various other properties such as morphology, crystalline behavior, structure, mechanical properties of natural rubber-polyethylene blends were investigated by Qin et al. [39]. Polyethylene-b-polyiso-prene acts as a successful compatibilizer here. Mechanical properties of the blends were improved upon the addition of the block copolymer (Table 12). The copolymer locates at the interface, and, thus, reduces the interfacial tension that is reflected in the mechanical properties. As the amount of graft copolymer increases, tensile strength and elongation at break increase and reach a leveling off. [Pg.644]

Electric discharge methods are known [31] to be very effective for nonactive polymer substrates such as polystyrene, polyethylene, polypropylene, etc. They are successfully used for cellulose-fiber modification to decrease the melt viscosity of cellulose-polyethylene composites [32] and to improve the mechanical properties of cellulose-polypropylene composites [28]. [Pg.795]

A polymer molecule may have just a linear chain or one or more hranches protruding from the polymer hackhone. Branching results mainly from chain transfer reactions (see Chain Transfer Reactions later in this chapter) and affects the polymer s physical and mechanical properties. Branched polyethylene usually has a few long hranches and many more short hranches... [Pg.303]

Currently, all commercially available, spirally wound lithium-ion cells use microporous polyolefin separators. In particular, separators are made from polyethylene, polypropylene, or some combination of the two. Polyolefins provide excellent mechanical properties and chemical stability at a reasonable cost. A number of manufacturers produce microporous polyolefin separators (Table 1.)... [Pg.554]

Table 9. Effect of silane treatment on the mechanical properties of kaolin-filled polyethylene compositions [276]... Table 9. Effect of silane treatment on the mechanical properties of kaolin-filled polyethylene compositions [276]...
Although the amount of ECC in polyethylene samples is not large, the mechanical properties of the material are markedly affected the tenacity and elastic modulus are higher. [Pg.227]

In this review recent theoretical developments which enable quantitative measures of molecular orientation in polymers to be obtained from infra-red and Raman spectroscopy and nuclear magnetic resonance have been discussed in some detail. Although this is clearly a subject of some complexity, it has been possible to show that the systematic application of these techniques to polyethylene terephthalate and polytetramethylene terephthalate can provide unique information of considerable value. This information can be used on the one hand to gain an understanding of the mechanisms of deformation, and on the other to provide a structural understanding of physical properties, especially mechanical properties. [Pg.114]

Poly(f -caprolactone) (PCL), the most representative member of this polyester family, is obtained by the ring-opening polymerization of e-caprolactone. It is a low-7 (60°C), low-Tg (—60°C) semicrystalline polyester that presents mechanical properties resembling those of low-density polyethylene (Table 2.10). [Pg.43]

Chattopadhyay S., Chaki T.K., and Bhowmick A.K., New thermoplastic elastomers from poly(ethyle-neoctene) (engage), poly(ethylene-vinyl acetate) and low-density polyethylene by electron beam technology structural characterization and mechanical properties. Rubber Chem. TechnoL, 74, 815, 2001. Roy Choudhury N. and Dutta N.K., Thermoplastic elastomeric natural rubber-polypropylene blends with reference to interaction between the components. Advances in Polymer Blends and Alloys Technology, Vol. 5 (K. Finlayson, ed.), Technomic Publishers, Pensylvania, 1994, 161. [Pg.156]

Choudhury N.R., Chaki T.K., Dutta A., and Bhowmick A.K. Thermal, x-ray and d3mamic mechanical properties of thermoplastic elastomeric natural rubber-polyethylene blends. Polymer, 30, 2047, 1989. Marasch M.J., TPU s Growth from versatility, 53rd Annual Tech. Conference, Antech 95 4088, Boston, May 7-11, 1995. [Pg.162]


See other pages where Polyethylene mechanical properties is mentioned: [Pg.195]    [Pg.149]    [Pg.397]    [Pg.162]    [Pg.2855]    [Pg.195]    [Pg.149]    [Pg.397]    [Pg.162]    [Pg.2855]    [Pg.437]    [Pg.449]    [Pg.328]    [Pg.404]    [Pg.403]    [Pg.154]    [Pg.442]    [Pg.494]    [Pg.87]    [Pg.2030]    [Pg.217]    [Pg.239]    [Pg.213]    [Pg.424]    [Pg.150]    [Pg.647]    [Pg.834]    [Pg.835]    [Pg.557]    [Pg.469]    [Pg.23]    [Pg.25]    [Pg.180]   


SEARCH



Cross-linked polyethylene mechanical properties

High density polyethylene mechanical properties

Mechanical Properties of Low-Density Polyethylene

Mechanical Properties of Polyethylene Terephthalate

Mechanical properties medium-density polyethylene

Mechanical properties polyethylene oxide

Mechanical properties ultra high molecular weight polyethylen

Polyethylene mechanical

Polyethylene terephthalate) mechanical properties

Polyethylene, diffusion mechanical properties

Polyethylene, ultra-high modulus mechanical properties

Polyethylene/clay mechanical properties

Polystyrene—polyethylene blends, mechanical properties

© 2024 chempedia.info