Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measuring polymer structure

Polymer structure can be described at a series of hierarchical levels  [Pg.25]

The primary structure includes the chemical connectivity of the macromolecule and is often an invariant quantity. [Pg.25]

The secondary structure includes the local geometric parameters that define the three-dimensional conformation of the chain. [Pg.25]

The tertiary structure includes the long-range interactions that define the global shape of the macromolecule. [Pg.25]

A complete presentation of all the methods used to determine polymer structure at all these levels is best reserved for technical monographs, hr the present text, three experimental techniques have been selected to illustrate the issues involved in measuring polymer structure. The measurement of primary structure is demonstrated using nuclear magnetic resonance (NMR) spectroscopy. The local conformation of a chain molecule is related to vibrational spectroscopy. And the global conformation of a chain molecule is derived from measurements of the scattering fimction, S q). [Pg.25]


The interest of laser siuface treatment of technical polymers is detailed. First experimental results concern polyetherimide exposed to Nd YAG laser beams in different gaseous atmospheres. Depending on the nature and the pressure of the gas, the incidence and the intensity of the laser beam, the surface affinity of the polymer with a liquid can be increased or reduced as revealed by contact angle measurements. Polymer structural changes are identified by FTIR-ATR. The extension of this approach to several polymers permits the identification of the mechanisms involved by the laser treatment. Ultimately, the benefits of this technical solution to applications in railway industry are presented. [Pg.2580]

X-ray Diffraction (XRD) is a powerful technique used to uniquely identify the crystalline phases present in materials and to measure the structural properties (strain state, grain size, epitaxy, phase composition, preferred orientation, and defect structure) of these phases. XRD is also used to determine the thickness of thin films and multilayers, and atomic arrangements in amorphous materials (including polymers) and at inter ces. [Pg.198]

The polymer = 8.19 dlg in hexafluoro-2-propanol, HFIP, solution) in Figs 1 and 2 is prepared on photoirradiation by a 500 W super-high-pressure Hg lamp for several hours and subjected to the measurements without purification. The nmr peaks in Fig. 1 (5 9.36, 8.66 and 8.63, pyrazyl 7.35 and 7.23, phenylene 5.00, 4.93, 4.83 and 4.42, cyclobutane 4.05 and 1.10, ester) correspond precisely to the polymer structure which is predicted from the crystal structure of the monomer. The outstanding sharpness of all the peaks in this spectrum indicates that the photoproduct has few defects in its chemical structure. The X-ray patterns of the monomer and polymer in Fig. 2 show that they are nearly comparable to each other in crystallinity. These results indicate a strictly crystal-lattice controlled process for the four-centre-type photopolymerization of the [l OEt] crystal. [Pg.124]

This discussion of the structures of diene polymers would be incomplete without reference to the important contributions which have accrued from applications of the ozone degradation method. An important feature of the structure which lies beyond the province of spectral measurements, namely, the orientation of successive units in the chain, is amenable to elucidation by identification of the products of ozone cleavage. The early experiments of Harries on the determination of the structures of natural rubber, gutta-percha, and synthetic diene polymers through the use of this method are classics in polymer structure determination. On hydrolysis of the ozonide of natural rubber, perferably in the presence of hydrogen peroxide, carbon atoms which were doubly bonded prior to formation of the ozonide... [Pg.243]

Mechanical and chemical methods for qualitative and quantitative measurement of polymer structure, properties, and their respective processes during interrelation with their environment on a microscopic scale exist. Bosch et al. [83] briefly discuss these techniques and point out that most conventional techniques are destructive because they require sampling, may lack accuracy, and are generally not suited for in situ testing. However, the process of polymerization, that is, the creation of a rigid structure from the initial viscous fluid, is associated with changes in the microenvironment on a molecular scale and can be observed with free-volume probes [83, 84]. [Pg.289]

Polymer structure and formulation. As an example, Woo et al. [7] measured OIT values for series of commercial PVC resins and polyester thermoplastic elastomers (TPEs). The researchers used the ASTM D3895-80 procedure, but substituted air as the oxidising gas instead of pure oxygen. A dependency on thermal processing history of the TPE film samples appeared to influence the measured OIT in the PVC study, chemically different chain ends affected polymer stability and hence OIT values. [Pg.391]

We first discuss the materials research which includes monomer synthesis, growth of monomer crystalline structures and polymerization in the solid state, yielding the requisite polymer structures. Next, the nonlinear optical experimental research is discussed which includes a novel experimental technique to measure x (w). Linear and nonlinear optical data obtained for the polydiacetylene films is subsequently presented. Detailed theoretical analysis relating the data to x (< >) and subsequently to its molecular basis will be discussed in a later publication. [Pg.215]

Cross-link density, 10 415-416, 417-418 direct measurement of, 10 426 427 Cross-linked copolymers, 7 6 lOt Cross-linked high amylose starch, 13 742 Cross-linked hydrogels, 13 729-730 Cross-linked polymers, internal stresses and, 10 423 424 Cross-linked starches, 4 721 Cross-linked thermoset polymer structure, 10 418... [Pg.233]

NMR spectra and Tj measurements at different temperatures. The local polymer chain motion varies over a frequency range of 104-106 Hz in the nematic phase. The activation energy of this motion is found to increase with decreasing number ( ) of methylene units in the spacer, and exhibits odd-even fluctuations. In a study of a homologous series of main-chain LC polyesters, 13C CP/MAS and variable-temperature experiments reveal a conformation-ally more homogeneous and a less dynamic nature for the even-chained than for the odd-chained polymer structures.300... [Pg.135]

Solubility of polymers in tetramethyl ammonium hydroxide aqueous solution was measured by dipping the wafer on which the polymer solution was spin-coated, for 1 min. at 25°C. The prebake was carried out at 90°C for 5min. Sensitivity of resists was measured after the exposure with CA 800(Cobilt) or KrF excimer laser(0.9mJ/cm2/1 pulse). The polymer structure was determined by iH-NMR, 13C-NMR(FX90Q apparatus,JEOL) and 2 Si-NMR. The molecular weight distribution was determined with a Toyo Soda Model 801 gel permeation chromatograph at 40°C. The four columns were connected in series, each packed with G-2000H8x3 and G-400H8(Toyo Soda polystylene gel), respectively. [Pg.136]

The photoablation behaviour of a number of polymers has been described with the aid of the moving interface model. The kinetics of ablation is characterized by the rate constant k and a laser beam attenuation by the desorbing products is quantified by the screening coefficient 6. The polymer structure strongly influences the ablation parameters and some general trends are inferred. The deposition rates and yields of the ablation products can also be precisely measured with the quartz crystal microbalance. The yields usually depend on fluence, wavelength, polymer structure and background pressure. [Pg.422]

Sulfur dioxide was the major volatile product and was used as a probe to correlate the radiation resistance with polymer structure. The use of biphenol in the polymer reduced G(SO ) by 60% compared with bisphenol A based systems (Bis-A PSF). Surprisingly, the isopro-pylidene group was shown to be remarkably radiation resistant. The ultimate tensile strain decreased with dose for all polysulfones investigated and the rate of decrease correlated well with the order of radiation resistance determined from volatile product measurements. The fracture toughness (K ) of Bis-A PSF also decreased with irradiation dose, but the biphenol based system maintained its original ductility. [Pg.252]

In this paper, we examine the relationship between radiation resistance and polymer structure using volatile product and mechanical property measurements. [Pg.253]

The 13C NMR spectra were measured regularly over 6 months (190 days) and the polymer structure became almost stable after this period. After 6 months, the relative intensities in the unsaturated carbon region were independent of CP time. The alkyl signal positions became constant after 11 days (Figure 38(b)). However, their line width gradually broadened to double the width after 6 months. [Pg.151]


See other pages where Measuring polymer structure is mentioned: [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.342]    [Pg.228]    [Pg.322]    [Pg.508]    [Pg.626]    [Pg.466]    [Pg.271]    [Pg.10]    [Pg.117]    [Pg.222]    [Pg.24]    [Pg.267]    [Pg.163]    [Pg.329]    [Pg.430]    [Pg.46]    [Pg.86]    [Pg.161]    [Pg.279]    [Pg.595]    [Pg.65]    [Pg.82]    [Pg.456]    [Pg.314]    [Pg.135]    [Pg.225]    [Pg.351]    [Pg.168]    [Pg.54]   


SEARCH



Polymer measurement

© 2024 chempedia.info