Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measurements of surfaces

The topic of capillarity concerns interfaces that are sufficiently mobile to assume an equilibrium shape. The most common examples are meniscuses, thin films, and drops formed by liquids in air or in another liquid. Since it deals with equilibrium configurations, capillarity occupies a place in the general framework of thermodynamics in the context of the macroscopic and statistical behavior of interfaces rather than the details of their molectdar structure. In this chapter we describe the measurement of surface tension and present some fundamental results. In Chapter III we discuss the thermodynamics of liquid surfaces. [Pg.4]

Bianco and Marmur [143] have developed a means to measure the surface elasticity of soap bubbles. Their results are well modeled by the von Szyszkowski equation (Eq. III-57) and Eq. Ill-118. They find that the elasticity increases with the size of the bubble for small bubbles but that it may go through a maximum for larger bubbles. Li and Neumann [144] have shown the effects of surface elasticity on wetting and capillary rise phenomena, with important implications for measurement of surface tension. [Pg.90]

Another approach to measurement of surface tension, density, and viscosity is the analysis of capillary waves or ripples whose properties are governed by surface tension rather than gravity. Space limitations prevent more than a summary presentation here readers are referred to several articles [123,124]. [Pg.121]

A direct measurement of surface tension is sometimes possible from the work of cleaving a crystal. Mica, in particular, has such a well-defined cleavage plane that it can be split into large sheets of fractional millimeter thickness. Orowan... [Pg.278]

D. D. Eley, ed., Adhesion, The Clarendon Press, Oxford, 1961. E. Passaglia, R. R. Stromberg, and J. Kruger, eds., Ellipsometry in the Measurement of Surfaces and Thin Films, National Bureau of Standards Miscellaneous Publication 256, Washington, DC, 1964. [Pg.287]

K. Kurihara, Direct Measurement of Surface Forces of Supramolecular Systems Structures and Interactions, in Microchemistry, H. Masuhara et al., Elsevier Science, 1994. [Pg.569]

The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

Compared witii other direct force measurement teclmiques, a unique aspect of the surface forces apparatus (SFA) is to allow quantitative measurement of surface forces and intermolecular potentials. This is made possible by essentially tliree measures (i) well defined contact geometry, (ii) high-resolution interferometric distance measurement and (iii) precise mechanics to control the separation between the surfaces. [Pg.1731]

The measurement of surface forces calls for a rigid apparatus that exhibits a high force sensitivity as well as distance measurement and control on a subnanometre scale [38]. Most SFAs make use of an optical interference teclmique to measure distances and hence forces between surfaces. Alternative distance measurements have been developed in recent years—predominantly capacitive techniques, which allow for faster and simpler acquisition of an averaged distance [H, 39, 40] or even allow for simultaneous dielectric loss measurements at a confined interface. [Pg.1731]

The measurement of surface forces out-of-plane (nonual to the surfaces) represents a central field of use of the SFA teclmique. Besides the ubiquitous van der Waals dispersion interaction between two (mica) surfaces... [Pg.1738]

Horn R G, Clarke D R and Clarkson M T 1988 Direct measurement of surface forces between sapphire crystals in aqueous solutions J. Mater. Res. 3 413-6... [Pg.1749]

The major role of TOF-SARS and SARIS is as surface structure analysis teclmiques which are capable of probing the positions of all elements with an accuracy of <0.1 A. They are sensitive to short-range order, i.e. individual interatomic spacings that are <10 A. They provide a direct measure of the interatomic distances in the first and subsurface layers and a measure of surface periodicity in real space. One of its most important applications is the direct determination of hydrogen adsorption sites by recoiling spectrometry [12, 4T ]. Most other surface structure teclmiques do not detect hydrogen, with the possible exception of He atom scattering and vibrational spectroscopy. [Pg.1823]

Pashley R M, McGuiggan P M, Ninham B W, Brady J and Evans D F 1986 Direct measurements of surface forces between bilayers of double-chained quaternary ammonium acetate and bromide surfactants J. Phys. Chem. 90 1637-42... [Pg.2607]

Measurement of Surface Activity. Each surface-active property can be measured in a variety of ways and the method of choice depends on the characteristics of the substance to be tested. The most frequendy determined properties are surface tension (Y5q, Ylg) i t if cial tension (Yll> Tlg) contact angle (9), and CMC. [Pg.237]

A new chemical sensor based on surface transverse device has been developed (99) (see Sensors). It resembles a surface acoustic wave sensor with the addition of a metal grating between the tranducer and a different crystal orientation. This sensor operates at 250 mH2 and is ideally suited to measurements of surface-attached mass under fluid immersion. By immohi1i2ing atra2ine to the surface of the sensor device, the detection of atra2ine in the range of 0.06 ppb to 10 ppm was demonstrated. [Pg.248]

Such nonequilihrium surface tension effects ate best described ia terms of dilatational moduh thanks to developments ia the theory and measurement of surface dilatational behavior. The complex dilatational modulus of a single surface is defined ia the same way as the Gibbs elasticity as ia equation 2 (the factor 2 is halved as only one surface is considered). [Pg.464]

Measurements of surface disorder require a high resolving power (the ability to distinguish two close-lying points in the diffraction pattern). Quantitative measurements of surface disorder are limited in the following manner, the worse the resolving power, the smaller the maximum scale of surface disorder that can be detected. For example, if the maximum resolvable distance of the diffractometer is 100 A, then a surface that has steps spaced more than 100 A apart will look perfect to the instrument. The theoretical analysis of disorder is much simpler than that for atomic positions. [Pg.262]

K. Metder. AppL Phys. 12,75, 1977. PL measurements of surface state densides and band bending in GaAs. [Pg.384]

Utilization of resonance effects can facilitate unenhanced Raman measurement of surfaces and make the technique more versatile. For instance, a fluorescein derivative and another dye were used as resonantly Raman scattering labels for hydroxyl and carbonyl groups on glassy carbon surfaces. The labels were covalently bonded to the surface, their fluorescence was quenched by the carbon surface, and their resonance Raman spectra could be observed at surface coverages of approximately 1%. These labels enabled assess to changes in surface coverage by C-OH and C=0 with acidic or alkaline pretreatment [4.293]. [Pg.260]

SERS substrates with bare metal surfaces irreversibly adsorb thioorganics (Eig. 4.59) and other compounds and can thus serve for the detection and identification of very low gas or solution concentrations of these substances [4.303]. SERS is especially well suited for the analysis of traces of gases, because it combines measurement of surface concentration with extremely high sensitivity. A monolayer in a typical focus of a laser with a diameter of 10 pm has a mass in the range of 10 femtograms even smaller amounts of substance are easily detectable, because 1% of a monolayer in a region 1-pm in diameter results in SERS of sufficient intensity. [Pg.263]

Fig. 5.6. Cross-sectional view of a liquid cell for in-situ AFM measurements of surface processes. Fig. 5.6. Cross-sectional view of a liquid cell for in-situ AFM measurements of surface processes.
Section 2 of this chapter describes the characterization of carbonaceous materials by powder X-ray diffraction, small-angle-X-ray scattering (SAXS), measurements of surface area, and by the carbon-hydrogen-nitrogen (CHN) test, a chemical analysis of composition. In this section, we also describe the electrochemical methods used to study carbonaceous materials. [Pg.346]

As mentioned earlier, the contact-mechanics-based experimental studies of interfacial adhesion primarily include (1) direct measurements of surface and interfacial energies of polymers and self-assembled monolayers (2) quantitative studies on the role of interfacial coupling agents in the adhesion of elastomers (3) adhesion of microparticles on surfaces and (4) adhesion of viscoelastic polymer particles. In these studies, a variety of experimental tools have been employed by different researchers. Each one of these tools offers certain advantages over the others. These experimental studies are reviewed in Section 4. [Pg.80]


See other pages where Measurements of surfaces is mentioned: [Pg.1067]    [Pg.33]    [Pg.118]    [Pg.237]    [Pg.292]    [Pg.574]    [Pg.1298]    [Pg.1823]    [Pg.1869]    [Pg.62]    [Pg.62]    [Pg.449]    [Pg.6]    [Pg.1883]    [Pg.200]    [Pg.323]    [Pg.374]    [Pg.718]    [Pg.721]    [Pg.149]    [Pg.65]    [Pg.76]    [Pg.91]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 ]




SEARCH



Measurement surface

© 2024 chempedia.info