Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mean droplet size various correlations

Various correlations for mean droplet size generated using pressure-swirl and fan spray atomizers are summarized in Tables 4.4 and 4.5, respectively. In the correlations for pressure-swirl data, FN is the Flow number defined as FN = ml/APlpl) )5, l0 and d0 are the length and diameter of final orifice, respectively, ls and ds are the length and diameter of swirl chamber, respectively, Ap is the total inlet ports area, /yds the film thickness in final orifice, 6 is the half of spray cone angle, and Weyis the Weber number estimated with film... [Pg.257]

Various correlations for mean droplet sizes generated by air-assist atomizers are given in Table 4.6. In these correlations, mA is the mass flow rate of air, h is the height of air annulus, tf0 is the initial film thickness defined as tj ) = dQw/dan, d0 is the outer diameter of pressure nozzle, dan is the diameter of annular gas nozzle, w is the slot width of pressure nozzle, C is a constant related to nozzle design, UA is the velocity of air, and MMDC is the modified mean droplet diameter for the conditions of droplet coalescence. Distinguishing air-assist and air-blast atomizers is often difficult. Moreover, many... [Pg.261]

Various correlations for mean droplet size generated by plain-jet, prefilming, and miscellaneous air-blast atomizers using air as atomization gas are listed in Tables 4.7, 4.8, 4.9, and 4.10, respectively. In these correlations, ALR is the mass flow rate ratio of air to liquid, ALR = mAlmL, Dp is the prefilmer diameter, Dh is the hydraulic mean diameter of air exit duct, vr is the kinematic viscosity ratio relative to water, a is the radial distance from cup lip, DL is the diameter of cup at lip, Up is the cup peripheral velocity, Ur is the air to liquid velocity ratio defined as U=UAIUp, Lw is the diameter of wetted periphery between air and liquid streams, Aa is the flow area of atomizing air stream, m is a power index, PA is the pressure of air, and B is a composite numerical factor. The important parameters influencing the mean droplet size include relative velocity between atomization air/gas and liquid, mass flow rate ratio of air to liquid, physical properties of liquid (viscosity, density, surface tension) and air (density), and atomizer geometry as described by nozzle diameter, prefilmer diameter, etc. [Pg.264]

In the empirical correlation proposed by Kato et al.,[503] the mean droplet size is inversely proportional to the water pressure, with a power index of 0.5 for conical shaped annular-jet atomizers, and 0.7-1.0 for V-shaped flat-jet atomizers. This suggests a lower efficiency of the annular-jet atomizers in terms of spray fineness at high water pressures. The data of Kato et al.15031 were obtained for water pressures lower than 10 MPa. Seki et al.15021 observed the similar trend in the water atomization of nickel and various steels at higher water pressures (>10 MPa). Since k is dependent on both... [Pg.289]

Various correlations for mean and maximum droplet sizes generated by smooth flat vaneless disks, vaneless disks, and wheels are listed in Tables 4.11, 4.12 and 4.13, respectively. In these correlations, d is the diameter of disk/cup, ft) and (Orps are the rotational speed of disk/cup in radians/s and rps, respectively, 6 is the semi cone... [Pg.270]

The last major type of rotary nozzles is the twin-fluid rotary nozzle. Its main application is combustion for various devices. The air (or another gas) is supplied with a spinning fan, at a flow rate much greater than that of the liquid. Once the air comes in contact with the liquid, the droplets produced become smaller and the spray is finer. This type of atomization is also very good for high viscosity liquids. Table 24.11 shows some mean drop size correlations for twin fluid rotary nozzles. [Pg.540]


See other pages where Mean droplet size various correlations is mentioned: [Pg.254]    [Pg.270]    [Pg.242]    [Pg.279]    [Pg.344]    [Pg.101]    [Pg.101]    [Pg.788]    [Pg.155]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Droplet size

Droplet size correlations

Mean droplet size

Mean droplet size correlations

Mean size

© 2024 chempedia.info