Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mathematical modeling of test chamber kinetics

Through this step and based on experimental evidence we try to develop the appropriate model to describe the test chamber kinetics. As was anticipated in the introduction of this Chapter, from a conceptual point of view, two broad categories of models can be developed empirical-statistical and physical-based mass transfer models. It should be emphasized that, in several cases, even the fundamentally based mass transfer models are indistinguishable from the empirical ones. This happens because the mass transfer models are generally very complex in both the physical concept involved and the mathematical treatment required. This often leads the modelers to introduce approximations, making the mass transfer models not completely distinguishable from some empirical models in terms of both functional formulations and descriptive capabilities. Considering the current status of models which have been developed to describe VOC emissions (and/or sink processes), we could define the mass transfer models as hybrid-empirical models. [Pg.156]

In our case study, the experimental observations (i.e. concentration versus time data) were used as input to the conceptualization phase of a mathematical model with two sink compartments (the so-called two-sink model). Following the above discussion, this model (schematically represented in Fig. 2.3-1) can be eonsidered as a hybrid-empirical model. Conceptually, this model describes the test chamber kinetics of a VOC for the three types of experiments which have been carried out. The adsorption-desorption kinetics is described by the rate constants k, k, k. Given that the conceptualization... [Pg.157]

However, the two-sink model as well as other existing adsorption (sink) models do not seem to be able to describe the strong asymmetry between the adsorption/desorption of VOCs on/from indoor surface materials (the desorption process is much slower than the adsorption process). Diffusion combined with internal adsorption is assumed to be capable of explaining the observed asymmetry. Diffusion mechanisms have been considered to play a role in interactions of VOCs with indoor sinks. Dunn and Chen (1993) proposed and tested three unified, diffusion-limited mathematical models to account for such interactions. The phrase unified relates to the ability of the model to predict both the ad/absorption and desorption phases. This is a very important aspect of modeling test chamber kinetics because in actual applications of chamber studies to indoor air quality (lAQ), we will never be able to predict when we will be in an accumulation or decay phase, so that the same model must apply to both. Development of such models is underway by different research groups. An excellent reference, in which the theoretical bases of most of the recently developed sorption models are reviewed, is the paper by Axley and Lorenzetti (1993). The authors proposed four generic families of models formulated as mass transport modules that can be combined with existing lAQ models. These models include processes such as equilibrium adsorption, boundary layer diffusion, porous adsorbent diffusion transport, and conveetion-diffusion transport. In their paper, the authors present applications of these models and propose criteria for selection of models that are based on the boundary layer/conduction heat transfer problem. [Pg.165]

In the following, a real case study will be given to practically demonstrate how the chamber kinetics of VOCs can be modelled by applying mathematical theory to handle experimental data resulting from experiments performed in test chambers. Through this case study, the different steps of model building and model validation processes will be clearly identified and thoroughly discussed. [Pg.155]


See other pages where Mathematical modeling of test chamber kinetics is mentioned: [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.167]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.167]    [Pg.439]   


SEARCH



Kinetic test

Mathematics tests

Modeling testing

Models testing

Testing chamber

Testing kinetic models

Testing kinetics

Testing of models

© 2024 chempedia.info