Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transport effectiveness factor

As a rule of thumb, axial dispersion of heat and mass (factors 2 and 3) only influence the reactor behavior for strong variations in temperature and concentration over a length of a few particles. Thus, axial dispersion is negligible if the bed depth exceeds about ten particle diameters. Such a situation is unlikely to be encountered in industrial fixed bed reactors and mostly also in laboratory-scale systems. Radial mass transport effects (factor 1) are also usually negligible as the reactor behavior is rather insensitive to the value of the radial dispersion coefficient. Conversely, radial heat transport (factor 4) is really important for wall-cooled or heated reactors, as such reactors are sensitive to the radial heat transfer parameters. [Pg.357]

Herc> ykt becomes a modified figure of merit y is sometimes called the mass transport effectiveness factor . [Pg.82]

Fig. 5.6 shows a plot of Eqn 5.5 which represents a reaction run with varying quantities of catalyst at a fixed pressure, temperature and agitation rate. When mass transport is an insignificant factor in the reaction, km approaches zero and the rate, r, equals kfX, which is the asymptote of the curve at low catalyst quantities. With larger amounts of catalyst, the curve approaches the second asymptote, r = km, for a reaction controlled by mass transport effects. There is... [Pg.81]

The intrinsic activity depends on the chemical and physical properties of the active component. For unsupported catalysts, the most important properties are the composition and structure of the catalyst surface and the presence, or absence, of special sites such as Br0nsted or Lewis acid centers, anion or cation defects, and sites of high coordination. For supported catalysts, the size and morphology of the dispersed phase are of additional importance. If intraparticle transport of reactants occurs with a characteristic time that is short compared to that of the reaction, then the observed and intrinsic rates of reaction will be identical. When the characteristic time for intraparticle mass transport is less than that for reaction, the observed rate of reaction per unit mass of catalyst becomes less than the intrinsic value, and the reaction kinetics are dominated by the effects of intraparticle mass transport. The factors governing intraparticle transport are the diffusivities of the reactants and products and the characteristic distance for diffusion. [Pg.4]

One of the most important parameters is the temperature, the starting temperature, and the initial reaction rate. One can determine experimentally the initial reaction rate after elimination of diffusion and mass transport effects and then determine the Arrhenius constants, which depend on the temperature. The collision factor (ko) and activation energy (E) parameters influence significantly the activity pattern and selectivity. Figure 3.1 illustrates the influence of the temperature on these parameters for different reactions and metallic catalysts. This effect is known as compensation effect, although empirically there are attempts on theoretical interpretations for different heterogeneous systems [1, 2]. [Pg.11]

The result is shown in Figure 10, which is a plot of the dimensionless effectiveness factor as a function of the dimensionless Thiele modulus ( ), which is R.(k/Dwhere R is the radius of the catalyst particle and k is the reaction rate constant. The effectiveness factor is defined as the ratio of the rate of the reaction divided by the rate that would be observed in the absence of a mass transport influence. The effectiveness factor would be unity if the catalyst were nonporous. Therefore, the reaction rate is... [Pg.171]

Figure 10 shows that Tj is a unique function of the Thiele modulus. When the modulus ( ) is small (- SdSl), the effectiveness factor is unity, which means that there is no effect of mass transport on the rate of the catalytic reaction. When ( ) is greater than about 1, the effectiveness factor is less than unity and the reaction rate is influenced by mass transport in the pores. When the modulus is large (- 10), the effectiveness factor is inversely proportional to the modulus, and the reaction rate (eq. 19) is proportional to k ( ), which, from the definition of ( ), implies that the rate and the observed reaction rate constant are proportional to (1 /R)(f9This result shows that both the rate constant, ie, a measure of the intrinsic activity of the catalyst, and the effective diffusion coefficient, ie, a measure of the resistance to transport of the reactant offered by the pore stmcture, influence the rate. It is not appropriate to say that the reaction is diffusion controlled it depends on both the diffusion and the chemical kinetics. In contrast, as shown by equation 3, a reaction in solution can be diffusion controlled, depending on D but not on k. [Pg.172]

The mass transport influence is easy to diagnose experimentally. One measures the rate at various values of the Thiele modulus the modulus is easily changed by variation of R, the particle size. Cmshing and sieving the particles provide catalyst samples for the experiments. If the rate is independent of the particle size, the effectiveness factor is unity for all of them. If the rate is inversely proportional to particle size, the effectiveness factor is less than unity and

experimental points allow triangulation on the curve of Figure 10 and estimation of Tj and ( ). It is also possible to estimate the effective diffusion coefficient and thereby to estimate Tj and ( ) from a single measurement of the rate (48). [Pg.172]

Intraparticle mass transport resistance can lead to disguises in selectivity. If a series reaction A — B — C takes place in a porous catalyst particle with a small effectiveness factor, the observed conversion to the intermediate B is less than what would be observed in the absence of a significant mass transport influence. This happens because as the resistance to transport of B in the pores increases, B is more likely to be converted to C rather than to be transported from the catalyst interior to the external surface. This result has important consequences in processes such as selective oxidations, in which the desired product is an intermediate and not the total oxidation product CO2. [Pg.172]

Rates and selectivities of soHd catalyzed reactions can also be influenced by mass transport resistance in the external fluid phase. Most reactions are not influenced by external-phase transport, but the rates of some very fast reactions, eg, ammonia oxidation, are deterrnined solely by the resistance to this transport. As the resistance to mass transport within the catalyst pores is larger than that in the external fluid phase, the effectiveness factor of a porous catalyst is expected to be less than unity whenever the external-phase mass transport resistance is significant, A practical catalyst that is used under such circumstances is the ammonia oxidation catalyst. It is a nonporous metal and consists of layers of wire woven into a mesh. [Pg.172]

The ratio of the observed reaction rate to the rate in the absence of intraparticle mass and heat transfer resistance is defined as the elFectiveness factor. When the effectiveness factor is ignored, simulation results for catalytic reactors can be inaccurate. Since it is used extensively for simulation of large reaction systems, its fast computation is required to accelerate the simulation time and enhance the simulation accuracy. This problem is to solve the dimensionless equation describing the mass transport of the key component in a porous catalyst[l,2]... [Pg.705]

Inspection of Fig. 15.3 reveals that while for jo 0.1 nAcm , the effectiveness factor is expected to be close to 1, for a faster reaction with Jo 1 p,A cm , it will drop to about 0.2. This is the case of internal diffusion limitation, well known in heterogeneous catalysis, when the reagent concentration at the outer surface of the catalyst grains is equal to its volume concentration, but drops sharply inside the pores of the catalyst. In this context, it should be pointed out that when the pore size is decreased below about 50 nm, the predominant mechanism of mass transport is Knudsen diffusion [Malek and Coppens, 2003], with the diffusion coefficient being less than the Pick diffusion coefficient and dependent on the porosity and pore stmcture. Moreover, the discrete distribution of the catalytic particles in the CL may also affect the measured current owing to overlap of diffusion zones around closely positioned particles [Antoine et ah, 1998]. [Pg.523]

Rigorous calibration is a requirement for the use of the side-by-side membrane diffusion cell for its intended purpose. The diffusion layer thickness, h, is dependent on hydrodynamic conditions, the system geometry, the spatial configuration of the stirrer apparatus relative to the plane of diffusion, the viscosity of the medium, and temperature. Failure to understand the effects of these factors on the mass transport rate confounds the interpretation of the data resulting from the mass transport experiments. [Pg.108]

Diffusion of small molecular penetrants in polymers often assumes Fickian characteristics at temperatures above Tg of the system. As such, classical diffusion theory is sufficient for describing the mass transport, and a mutual diffusion coefficient can be determined unambiguously by sorption and permeation methods. For a penetrant molecule of a size comparable to that of the monomeric unit of a polymer, diffusion requires cooperative movement of several monomeric units. The mobility of the polymer chains thus controls the rate of diffusion, and factors affecting the chain mobility will also influence the diffusion coefficient. The key factors here are temperature and concentration. Increasing temperature enhances the Brownian motion of the polymer segments the effect is to weaken the interaction between chains and thus increase the interchain distance. A similar effect can be expected upon the addition of a small molecular penetrant. [Pg.464]

When a solid acts as a catalyst for a reaction, reactant molecules are converted into product molecules at the fluid-solid interface. To use the catalyst efficiently, we must ensure that fresh reactant molecules are supplied and product molecules removed continuously. Otherwise, chemical equilibrium would be established in the fluid adjacent to the surface, and the desired reaction would proceed no further. Ordinarily, supply and removal of the species in question depend on two physical rate processes in series. These processes involve mass transfer between the bulk fluid and the external surface of the catalyst and transport from the external surface to the internal surfaces of the solid. The concept of effectiveness factors developed in Section 12.3 permits one to average the reaction rate over the pore structure to obtain an expression for the rate in terms of the reactant concentrations and temperatures prevailing at the exterior surface of the catalyst. In some instances, the external surface concentrations do not differ appreciably from those prevailing in the bulk fluid. In other cases, a significant concentration difference arises as a consequence of physical limitations on the rate at which reactant molecules can be transported from the bulk fluid to the exterior surface of the catalyst particle. Here, we discuss... [Pg.474]

The metal ion in electroless solutions may be significantly complexed as discussed earlier. Not all of the metal ion species in solution will be active for electroless deposition, possibly only the uncomplexed, or aquo-ions hexaquo in the case of Ni2+, and perhaps the ML or M2L2 type complexes. Hence, the concentration of active metal ions may be much less than the overall concentration of metal ions. This raises the possibility that diffusion of metal ions active for the reduction reaction could be a significant factor in the electroless reaction in cases where the patterned elements undergoing deposition are smaller than the linear, or planar, diffusion layer thickness of these ions. In such instances, due to nonlinear diffusion, there is more efficient mass transport of metal ion to the smaller features than to large area (relative to the diffusion layer thickness) features. Thus, neglecting for the moment the opposite effects of additives and dissolved 02, the deposit thickness will tend to be greater on the smaller features, and deposit composition may be nonuniform in the case of alloy deposition. [Pg.262]


See other pages where Mass transport effectiveness factor is mentioned: [Pg.532]    [Pg.105]    [Pg.351]    [Pg.157]    [Pg.82]    [Pg.85]    [Pg.91]    [Pg.487]    [Pg.90]    [Pg.439]    [Pg.205]    [Pg.131]    [Pg.267]    [Pg.379]    [Pg.226]    [Pg.145]    [Pg.928]    [Pg.643]    [Pg.510]    [Pg.229]    [Pg.207]    [Pg.225]    [Pg.292]    [Pg.521]    [Pg.538]    [Pg.178]    [Pg.272]    [Pg.435]    [Pg.439]    [Pg.53]    [Pg.203]    [Pg.214]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Effective transport

Mass effects

Mass transport

Mass transport effects

Mass transport factor

Transport effects

© 2024 chempedia.info