Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer holdup

The role of coalescence within a contactor is not always obvious. Sometimes the effect of coalescence can be inferred when the holdup is a factor in determining the Sauter mean diameter (67). If mass transfer occurs from the dispersed (d) to the continuous (e) phase, the approach of two drops can lead to the formation of a local surface tension gradient which promotes the drainage of the intervening film of the continuous phase (75) and thereby enhances coalescence. It has been observed that d-X.o-c mass transfer can lead to the formation of much larger drops than for the reverse mass-transfer direction, c to... [Pg.69]

Pressure. Within limits, pressure may have Htfle effect in air-sparged LPO reactors. Consider the case where the pressure is high enough to supply oxygen to the Hquid at a reasonable rate and to maintain the gas holdup relatively low. If pressure is doubled, the concentration of oxygen in the bubbles is approximately doubled and the rate of oxygen deHvery from each bubble is also approximately doubled in the mass-transfer rate-limited zone. The total number of bubbles, however, is approximately halved. The overall effect, therefore, can be small. The optimum pressure is likely to be determined by the permissible maximum gas holdup and/or the desirable maximum vapor load in the vent gas. [Pg.342]

Static mixing of gas—Hquid systems can provide good interphase contacting for mass transfer and heat transfer. Specific interfacial area for the SMV (Koch/Sulzer) mixer is related to gas velocity and gas holdup ( ) by the following ... [Pg.437]

Z. 5-25-Y, large huhhles = AA = 0.42 (NG..) Wi dy > 0.25 cm Dr luterfacial area 6 fig volume dy [E] Use with arithmetic concentration difference, ffg = fractional gas holdup, volume gas/total volume. For large huhhles, k is independent of bubble size aud independent of agitation or liquid velocity. Resistance is entirely in liquid phase for most gas-liquid mass transfer. [79][91] p. 452 [109] p. 119 [114] p. 249... [Pg.615]

More often than not the rate at which residual absorbed gas can be driven from the liqmd in a stripping tower is limited by the rate of a chemical reaction, in which case the liquid-phase residence time (and hence, the tower liquid holdup) becomes the most important design factor. Thus, many stripper-regenerators are designed on the basis of liquid holdup rather than on the basis of mass transfer rate. [Pg.1352]

Operating holdup contributes effectively to mass-transfer rate, since it provides residence time for phase contact and surface regeneration via agglomeration and dispersion. Static holdup is hmited in its contribution to mass-transfer rates, as indicated by Thoenes and Kramers [Chem. Eng. ScL, 8, 271 (1958)]. In laminar regions holdup in general has a negative effecl on the efficiency of separation. [Pg.1394]

The power for agitation of two-phase mixtures in vessels such as these is given by the cuiwes in Fig. 15-23. At low levels of power input, the dispersed phase holdup in the vessel ((j)/ ) can be less than the value in the feed (( )df) it will approach the value in the feed as the agitation is increased. Treybal Mass Transfer Operations, 3d ed., McGraw-HiU, New York, 1980) gives the following correlations for estimation of the dispersed phase holdup based on power and physical properties for disc flat-blade turbines ... [Pg.1468]

Three criteria for scale-up are that the laboratory and industrial units have the same mass-transfer coefficients /cg and E/cl and the same ratio of the specific interfacial surface and liquid holdup Tables 23-9 and 23-10 give order-of-magnitude values of some parameters that may be expected in common types of liquid/gas contactors. [Pg.2109]

TABLE 23-9 Mass-Transfer Coefficients/ Interfacial Areas and Liquid Holdup in Gas/Liquid Reactions... [Pg.2109]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

The experimental and theoretical work reported in the literature will be reviewed for each of the five major types of ga s-liquid-particle operation under the headings Mass transfer across gas-liquid interface mass transfer across liquid-solid interface holdup and axial dispersion of gas phase holdup and axial dispersion of liquid phase heat transfer reaction kinetics. [Pg.90]

The results reported for beds of small particles (1 mm diameter and less) are in substantial agreement on the fact that the presence of solid particles tends to decrease the gas holdup and, as a consequence, the gas residencetime. This fact may also support the observations of gas absorption rate by Massimilla et al. (Section V,E,1) if it is assumed that a decrease of absorption rate caused by a decrease of residence time outweighs the increase of absorption rate caused by increase of mass-transfer coefficient arising from the increase in bubble Reynolds number. These results on gas holdup are in... [Pg.126]

This brief discussion of some of the many effects and interrelations involved in changing only one of the operating variables points up quite clearly the reasons why no exact analysis of the dispersion of gases in a liquid phase has been possible. However, some of the interrelationships can be estimated by using mathematical models for example, the effects of bubble-size distribution, gas holdup, and contact times on the instantaneous and average mass-transfer fluxes have recently been reported elsewhere (G5, G9). [Pg.299]

Yoshida and Miura (Y3) reported empirical correlations for average bubble diameter, interfacial area, gas holdup, and mass-transfer coefficients. The bubble diameter was calculated as... [Pg.307]

Stirred-slurry operation, 120-123 holdup, axial dispersion, 122-123 mass transfer, 120-122 reactors, 80 Subcooling, 236-238 inlet, 261 Subreactors, 363 Sulfite-oxidation, 300-301 Summerfield, combustion equation, 44-43 Surface-active agents, 327-333 experiment, 327-329 theory, 329-333... [Pg.413]

The central difficulty in applying Equations (11.42) and (11.43) is the usual one of estimating parameters. Order-of-magnitude values for the liquid holdup and kiA are given for packed beds in Table 11.3. Empirical correlations are unusually difficult for trickle beds. Vaporization of the liquid phase is common. From a formal viewpoint, this effect can be accounted for through the mass transfer term in Equation (11.42) and (11.43). In practice, results are specific to a particular chemical system and operating mode. Most models are proprietary. [Pg.413]

Mass transfer in the continuous phase is less of a problem for liquid-liquid systems unless the drops are very small or the velocity difference between the phases is small. In gas-liquid systems, the resistance is always on the liquid side, unless the reaction is very fast and occurs at the interface. The Sherwood number for mass transfer in a system with dispersed bubbles tends to be almost constant and mass transfer is mainly a function of diffusivity, bubble size, and local gas holdup. [Pg.347]

The diffusivity in gases is about 4 orders of magnitude higher than that in liquids, and in gas-liquid reactions the mass transfer resistance is almost exclusively on the liquid side. High solubility of the gas-phase component in the liquid or very fast chemical reaction at the interface can change that somewhat. The Sh-number does not change very much with reactor design, and the gas-liquid contact area determines the mass transfer rate, that is, bubble size and gas holdup will determine reactor efficiency. [Pg.352]

The bubble size distribution is closely related to the hydrodynamics and mass transfer behavior. Therefore, the gas distributor should be properly designed to give a good performance of distributing gas bubbles. Lin et al. [21] studied the influence of different gas distributor, i.e., porous sinter-plate (case 1) and perforated plate (case 2) in an external-loop ALR. Figure 3 compares the bubble sizes in the two cases. The bubble sizes are much smaller in case 1 than in case 2, indicating a better distribution performance of the porous sinter-plate. Their results also show the radial profile of the gas holdup in case 1 is much flatter than that in case 2 at the superficial gas velocities in their work. [Pg.86]

To provide the pr equisite knowledge for designing the three-phase fluidized-bed reactors with new modes, the hydrodynamics such as phase holdup, mixing and bubble properties and heat and mass transfer characteristics in the reactors have to be determined. Thus, in this study, the hydrodynamics and heat and mass transfer characteristics in the inverse and circulating three-phase fluidized-bed reactors for wastewater treatment in the present and previous studies have been summarized. Correlations for the hydrod3aiamics as well as mass and heat transfer coefficients are proposed. The areas wherein future research should be undertaken to improve... [Pg.101]


See other pages where Mass transfer holdup is mentioned: [Pg.65]    [Pg.74]    [Pg.169]    [Pg.617]    [Pg.1321]    [Pg.1364]    [Pg.1382]    [Pg.1476]    [Pg.1476]    [Pg.1476]    [Pg.1476]    [Pg.1480]    [Pg.1489]    [Pg.2115]    [Pg.117]    [Pg.296]    [Pg.298]    [Pg.317]    [Pg.350]    [Pg.354]    [Pg.361]    [Pg.371]    [Pg.388]    [Pg.409]    [Pg.409]    [Pg.410]    [Pg.397]    [Pg.397]    [Pg.427]    [Pg.86]   
See also in sourсe #XX -- [ Pg.396 ]




SEARCH



Dynamic holdup, mass transfer

Holdup

Stagnant holdup, mass transfer

© 2024 chempedia.info