Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectroscopy instrumentation

Figure 6 The SELDI technology. This type of proteomic analytical tool is a class of mass spectroscopy instrument that is useful in high-throughput proteomic fingerprinting of serum. Using a robotic sample dispenser, 1 p,L of serum is applied to the surface of a protein-binding chip. A subset of the proteins in the sample binds to the surface of the chip. The bound proteins are treated with a matrix-assisted laser desorption and ionization matrix and are washed and dried. The chip, which contains multiple patient samples, is inserted into a vacuum chamber where it is irradiated with a laser. The laser desorbs the adherent proteins and causes them to be launched as ions. The TOF of the ion before detection by an electrode is a measure of the mass-to-charge (m/z) value of the ion. The ion spectra can be analyzed by computer-assisted tools that classify a subset of the spectra by characteristic patterns of relative intensity (adapted from www.evmsdoctors.com). Figure 6 The SELDI technology. This type of proteomic analytical tool is a class of mass spectroscopy instrument that is useful in high-throughput proteomic fingerprinting of serum. Using a robotic sample dispenser, 1 p,L of serum is applied to the surface of a protein-binding chip. A subset of the proteins in the sample binds to the surface of the chip. The bound proteins are treated with a matrix-assisted laser desorption and ionization matrix and are washed and dried. The chip, which contains multiple patient samples, is inserted into a vacuum chamber where it is irradiated with a laser. The laser desorbs the adherent proteins and causes them to be launched as ions. The TOF of the ion before detection by an electrode is a measure of the mass-to-charge (m/z) value of the ion. The ion spectra can be analyzed by computer-assisted tools that classify a subset of the spectra by characteristic patterns of relative intensity (adapted from www.evmsdoctors.com).
Mass spectroscopy instrumentation has four basic components, sample input, ion source, a mass analyzer, and an ion detection and recording device. Once the data are gathered, the interpretive problem requires decisions as to whether the detected species results from vaporization of the polymer chain, decomposition, double charges, and so on. [Pg.130]

In all instances, there is a need to confirm the purity or stability of a particular sample before and after testing. Generally, the sponsor will assume these functions, but many private testing laboratories are associated with sophisticated analytical chemistry laboratories equipped with infrared spectrometry, gas chromatography, high-pressure liquid chromatography, and gas chromatography-mass spectroscopy instruments. [Pg.100]

To aid in sharing spectra obtained using equipment from different vendors, a number of efforts have been made to establish standard exchange formats. In 1987, the Joint Committee on Atomic and Molecular Physical Data (JCAMP) published the JCAMP-DX format as a standard for exchange of infrared spectra. This general format was subsequently extended to Include mass and NMR spectra. Although JCAMP-DX files are created with small variations from vendor to vendor, it is supported as an export format by most infrared and mass spectroscopy instrument vendors. [Pg.1110]

Most of the experimental information concerning copolymer microstructure has been obtained by physical methods based on modern instrumental methods. Techniques such as ultraviolet (UV), visible, and infrared (IR) spectroscopy, NMR spectroscopy, and mass spectroscopy have all been used to good advantage in this type of research. Advances in instrumentation and computer interfacing combine to make these physical methods particularly suitable to answer the question we pose With what frequency do particular sequences of repeat units occur in a copolymer. [Pg.460]

The modern electronic industry has played a very important role in the development of instrumentation based on physical-analytical methods As a result, a rapid boom in the fields of infrared, nuclear magnetic resonance (NMR), Raman, and mass spectroscopy and vapor-phase (or gas-liquid) chromatography has been observed. Instruments for these methods have become indispensable tools in the analytical treatment of fluonnated mixtures, complexes, and compounds The detailed applications of the instrumentation are covered later in this chapter. [Pg.1023]

It would be of obvious interest to have a theoretically underpinned function that describes the observed frequency distribution shown in Fig. 1.9. A number of such distributions (symmetrical or skewed) are described in the statistical literature in full mathematical detail apart from the normal- and the f-distributions, none is used in analytical chemistry except under very special circumstances, e.g. the Poisson and the binomial distributions. Instrumental methods of analysis that have Powjon-distributed noise are optical and mass spectroscopy, for instance. For an introduction to parameter estimation under conditions of linked mean and variance, see Ref. 41. [Pg.29]

Figure 7b also illustrates the high detection sensitivity of the FTMS instrument. We calculate that the CO peak corresponds to approximately 5000 ions in the analyzer cell. In Figure 7a, the number of ions with m/z 43 was calculated to be approximately 20 million. A point to note is that In FTMS the sensitivity increases with resolution whereas it decreases with other mass spectroscopies. [Pg.247]

Different experimental approaches were applied in the past [6, 45] and in recent years [23, 46] to study the nature of the organic residue. But the results or their interpretation have been contradictory. Even at present, the application of modem analytical techniques and optimized electrochemical instruments have led to different results and all three particles given above, namely HCO, COH and CO, have been recently discussed as possible methanol intermediates [14,15,23,46,47]. We shall present here the results of recent investigations on the electrochemical oxidation of methanol by application of electrochemical thermal desorption mass spectroscopy (ECTDMS) on-line mass spectroscopy, and Fourier Transform IR-reflection-absorption spectroscopy (SNIFTIRS). [Pg.141]

In mass spectroscopy, sample molecules are ionized and the different masses of the ions formed are selected by use of an electric or magnetic field. In its simplest form, a mass spectrometer is an instrument that measures the mass-to-electric charge ratios of ions formed when a sample is ionized. If some of the sample molecules are singly ionized and reach the ion detector without fragmenting, then the mass-to-electric charge ratio of the ions gives a direct measurement of the weight of the molecule (de Hoffmann and Stroobant 2001). [Pg.61]

SIMS instrumentation, 24 108-109. See also Secondary ion mass spectroscopy (SIMS)... [Pg.847]

For this method, the drug candidate is labeled with a radioisotope, such as carbon-14. The AD ME of the compound within the body can be monitored by analyzing samples using high sensitivity instrumentation, for example, accelerator mass spectroscopy. [Pg.181]

After optimization of the correct capillary parameters (ID, OD, Lj), detection at the microscale level became the next major challenge for the survival of CE. Despite the challenges, many of the common HPLC detectors have a CE complement, e.g., absorbance, fluorescence, conductivity, photodiode array, and mass spectroscopy. Small dimensions mean universal detectors such as refractive index cannot be used. A sample of detectors will be discussed. The technical aspects of each detector will not be covered except in relation to the CE instrument. Readers are advised to consult an instrumentation textbook for more details on theory of operation. [Pg.50]

To optimize the applicability of the electrothermal vaporization technique, the most critical requirement is the design of the sample transport mechanism. The sample must be fully vaporized without any decomposition, after desolvation and matrix degradation, and transferred into the plasma. Condensation on the vessel walls or tubing must be avoided and the flow must be slow enough for elements to be atomized efficiently in the plasma itself. A commercial electrothermal vaporizer should provide flexibility and allow the necessary sample pretreatment to introduce a clean sample into the plasma. Several commercial systems are now available, primarily for the newer technique of inductively coupled plasma mass spectroscopy. These are often extremely expensive, so home built or cheaper systems may initially seem attractive. However, the cost of any software and hardware interfacing to couple to the existing instrument should not be underestimated. [Pg.162]

The Nickel Producers Environmental Research Association (NiPERA) is sponsoring research on the application of inductively coupled plasma-mass spectroscopy (ICP-MS) to isotopic analysis of nickel in biological samples, on the development of sampling instrumentation for assessing workers exposure to nickel in the nickel industry, and on methods for utilizing newly developed analytical methods, such as laser beam ionization mass spectrometry, for the identification and speciation of nickel compounds in powders and dusts with particular reference to nickel refining. [Pg.215]

Chemists use an instrument called a mass spectrometer to measure the relative abundance of isotopes. There are different kinds of mass spectrometers, but the basic idea is to measure the mass of a substance by applying a force. The response to this force depends on the object s mass—think of Newton s second law, where acceleration equals force divided by mass. In the case of mass spectroscopy, the substances to be measured are first ionized—they are made into charged particles called ions by stripping electrons. A magnetic field deflects the motion of an ion, and the deflection depends on the ion s mass, most of which is due to the protons and neutrons in the nucleus. The technique separates different isotopes and measures their abundance in a given sample. [Pg.175]

The time-of-flight secondary ion mass spectroscopy (ToF-SIMS) analysis was performed on a CAMECA ION-TOF Model IV spectrometer. This instrument was equipped with a reflection-type ToF mass analyzer and a pulsed 25 kV primary... [Pg.186]

R. B. Cole, Electrospray Ionization Mass Spectroscopy - Fundamentals Instrumentation and Applications , Wiley, New York, 1997. [Pg.110]

Consideration must be given to the quantity of sample needed for the minimum detection ]imits of the instrumental technique used. A number of techniques have been ranked in order of increasing amounts of material needed as follows mass spectroscopy (1 - 10 yg), chemical spot tests (1 - 100 yg), infrared and ultraviolet spectroscopy (10 - 200 yg), melting point (0.1 -1 mg), elemental analysis (0.5 - 5 mg), boiling point (1 - 10 mg), functional group analysis (1 - 20 mg), and nuclear magnetic resonance spectroscopy (1-25 mg). [Pg.165]

X-ray fluorescence, mass spectroscopy, emission spectrography, and ion-conductive plasma—atomic emission spectroscopy (icp—aes) are used in specialized laboratories equipped for handling radioisotopes with these instruments. [Pg.200]

ANALYTICALMETHODS - HYPHENATED INSTRUMENTS] (Vol 2) Gas chromatography-mass spectroscopy... [Pg.434]


See other pages where Mass spectroscopy instrumentation is mentioned: [Pg.536]    [Pg.536]    [Pg.486]    [Pg.81]    [Pg.306]    [Pg.57]    [Pg.61]    [Pg.61]    [Pg.40]    [Pg.46]    [Pg.225]    [Pg.406]    [Pg.283]    [Pg.32]    [Pg.273]    [Pg.230]    [Pg.67]    [Pg.554]    [Pg.7]    [Pg.102]    [Pg.9]    [Pg.1154]    [Pg.158]    [Pg.956]    [Pg.216]    [Pg.148]   
See also in sourсe #XX -- [ Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 ]




SEARCH



Instruments spectroscopy

Mass spectroscopy

Spectroscopy instrumentation

© 2024 chempedia.info