Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometers, importance

Recently, an even simpler version of PI-ESI [114] was proposed, in which the use of a capillary as sample emitter was circumvented. A sample droplet (4-10 pi) containing analytes was placed in front of the MS inlet connected to the source of electric potential ( 3 kV). The ions corresponding to the analyte molecules present in this droplet were instantly recorded by a mass spectrometer. Importantly, the sample droplet was deposited on a dielectric substrate. Polarization of electric charges on the surface of the dielectric and the sample contributes to detachment of smaller droplets which are directed toward the MS orifice (Figure 2.16). This step is followed by desolvation which may occur in a similar way to that in ESI. Because of the simplicity of the setup, Pl-ESI is suitable for use in TRMS studies (see Chapter 11). [Pg.39]

Molecular Identification. In the identification of a compound, the most important information is the molecular weight. The mass spectrometer is able to provide this information, often to four decimal places. One assumes that no ions heavier than the molecular ion form when using electron-impact ionization. The chemical ionization spectrum will often show a cluster around the nominal molecular weight. [Pg.812]

If the liquid that is being bombarded contains ions, then some of these will be ejected from the liquid and can be measured by the mass spectrometer. This is an important but not the only means by which ions appear in a FAB or LSIMS spectrum. Momentum transfer of preformed ions in solution can be used to enhance ion yield, as by addition of acid to an amine to give an ammonium species (Figure 4.3). [Pg.19]

A further consequence of the high temperatures is that much of the sample is simply evaporated without producing isolated positive ions. There is a competition between formation of positive ions and the evaporation of neutral particles. Since the mass spectrometer examines only isolated charged species, it is important for maximum sensitivity that the ratio of positive ions to neutrals be as large as possible. Equation 7.1 governing this ratio is given here. [Pg.46]

The advent of atmospheric-pressure ionization (API) provided a method of ionizing labile and nonvolatile substances so that they could be examined by mass spectrometry. API has become strongly linked to HPLC as a basis for ionizing the eluant on its way into the mass spectrometer, although it is also used as a stand-alone inlet for introduction of samples. API is important in thermospray, plasmaspray, and electrospray ionization (see Chapters 8 and 11). [Pg.61]

Some Factors Important in Choosing between Quadrupole and Magnetic-Sector Mass Spectrometers... [Pg.186]

There is a more important use. Suppose a mass spectrometer has accurately measured the molecular mass of an unknown substance as 58.04189. Reference to tables of molecular mass vs. elemental composition will reveal that the molecular formula is CjH O (see Table 38.2). The molecular formula for an unknown substance can be determined which is enormously helpful in identifying it. [Pg.271]

Liquids that are sufficiently volatile to be treated as gases (as in GC) are usually not very polar and have little or no hydrogen bonding between molecules. As molecular mass increases and as polar and hydrogen-bonding forces increase, it becomes increasingly difficult to treat a sample as a liquid with inlet systems such as El and chemical ionization (Cl), which require the sample to be in vapor form. Therefore, there is a transition from volatile to nonvolatile liquids, and different inlet systems may be needed. At this point, LC begins to become important for sample preparation and connection to a mass spectrometer. [Pg.279]

The previous discussion has concentrated on major factors likely to be important in choosing the best mass spectrometer for a given defined purpose. Clearly, there are likely to be other issues that need to be considered, and instrument price will be one of these. The major considerations are listed in Tables 39.1-4. [Pg.285]

The ions so produced are separated by their mass-to-charge (m/z) ratios. For peptides and proteins, the intact molecules become protonated with a number (n) of protons (H+). Thus, instead of the true molecular mass (M), molecular ions have a mass of [M + uH]. More importantly, the ion has n positive charges resulting from addition of the n protons [M + uH]". Since the mass spectrometer does not measure mass directly but, rather, mass-to-charge (m/z) ratio, the measured m/z value is [M + uH]/u. This last value is less than the true molecular mass, depending on the value of n. If the ion of true mass 20,000 Da carries 10 protons, for example, then the m/z value measured would be (20,000 + 10)/10 = 2001. [Pg.291]

A common mistake for beginners in mass spectrometry is to confuse average atomic mass and isotopic mass. For example, the average atomic mass for chlorine is close to 35.45, but this average is of the numbers and masses of Cl and Cl isotopes. This average must be used for instruments that cannot differentiate isotopes (for example, gravimetric balances). Mass spectrometers do differentiate isotopes by mass, so it is important in mass spectrometry that isotopic masses be used... [Pg.348]

Accurate, precise isotope ratio measurements are important in a wide variety of applications, including dating, examination of environmental samples, and studies on drug metabolism. The degree of accuracy and precision required necessitates the use of special isotope mass spectrometers, which mostly use thermal ionization or inductively coupled plasma ionization, often together with multiple ion collectors. [Pg.369]

A second important need for some guidance system lies in stray electric fields. Clearly, a sufficiently large potential arranged transversely to an ion beam can serve to deflect ions away from the intended direction. Such stray fields can be produced easily by sharp edges or points on the inside of a mass spectrometer and even more so in an ion guide itself. Considerable care is needed in the construction and design of mass spectrometers to reduce these effects to a minimum. [Pg.372]

Finally, probably the most important item affecting an ion beam is the overall gas pressure inside the instrument. Generally, a mass spectrometer operates under a high vacuum, in which... [Pg.372]

The mass spectrometer provides a mass spectrum that is actually an analog voltage varying in amplitude with time as ions of different m/z values arrive at the ion collector within a period of a few seconds. An important exception to this generalization occurs with ion collectors, called time-to-digital converters because their output is already digitized. [Pg.421]

The three isotopes of hydrogen are almost indistinguishable for most chemical purposes, but a mass Spectrometer can see them as three different entities of mass 1, 2, and 3 Da. Isotopes of other elements can also be distinguished. Mass spectrometry is important for its ability to separate the isotopes of elements. [Pg.423]

Atoms of elements are composed of isotopes. The ratio of natural abundance of the isotopes is characteristic of an element and is important in analysis. A mass spectrometer is normally the best general instrument for measuring isotope ratios. [Pg.424]

Three important parameters for mass spectrometers are mass resolution, mass range, and sensitivity. The resolution, R, required to separate two ions of mass m and (m + Am) is given by equation 1. [Pg.539]

HPLC systems coupled to mass spectrometers (LC-MS) are extremely important methods for the separation and identification of substances. If not for the costs involved in LC-MS, these systems would be more commonly found in research laboratories. [Pg.25]

Detection limits in ICPMS depend on several factors. Dilution of the sample has a lai e effect. The amount of sample that may be in solution is governed by suppression effects and tolerable levels of dissolved solids. The response curve of the mass spectrometer has a large effect. A typical response curve for an ICPMS instrument shows much greater sensitivity for elements in the middle of the mass range (around 120 amu). Isotopic distribution is an important factor. Elements with more abundant isotopes at useful masses for analysis show lower detection limits. Other factors that affect detection limits include interference (i.e., ambiguity in identification that arises because an elemental isotope has the same mass as a compound molecules that may be present in the system) and ionization potentials. Elements that are not efficiently ionized, such as arsenic, suffer from poorer detection limits. [Pg.628]

One of the important advantages of ICPMS in problem solving is the ability to obtain a semiquantitative analysis of most elements in the periodic table in a few minutes. In addition, sub-ppb detection limits may be achieved using only a small amount of sample. This is possible because the response curve of the mass spectrometer over the relatively small mass range required for elemental analysis may be determined easily under a given set of matrix and instrument conditions. This curve can be used in conjunction with an internal or external standard to quantily within the sample. A recent study has found accuracies of 5—20% for this type of analysis. The shape of the response curve is affected by several factors. These include matrix (particularly organic components), voltages within the ion optics, and the temperature of the interffice. [Pg.630]

An important parameter when considering GC resolution of the sample components is the carrier gas linear velocity (flow rate, F), which can be determined by injecting 5-50 /A of argon or butane and measuring the time from injection to detection by the mass spectrometer. An optimum linear velocity using helium as a carrier gas is approximately 30 cm/sec and... [Pg.362]


See other pages where Mass spectrometers, importance is mentioned: [Pg.47]    [Pg.47]    [Pg.813]    [Pg.2066]    [Pg.2083]    [Pg.55]    [Pg.62]    [Pg.185]    [Pg.225]    [Pg.228]    [Pg.245]    [Pg.276]    [Pg.277]    [Pg.277]    [Pg.277]    [Pg.281]    [Pg.335]    [Pg.353]    [Pg.475]    [Pg.539]    [Pg.539]    [Pg.545]    [Pg.549]    [Pg.400]    [Pg.321]    [Pg.62]    [Pg.74]    [Pg.205]    [Pg.549]   
See also in sourсe #XX -- [ Pg.356 ]




SEARCH



© 2024 chempedia.info