Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese ions, oxidation

HalliwellB. 1984. Manganese ions, oxidation reactions and the superoxide radical. Neurotoxicology. 5 113-118. [Pg.457]

In the laboratory, bromine is prepared by oxidation of bromide ion the oxidation is carried out by mixing solid potassium bromide with manganese(IV) oxide and distilling with concentrated sulphuric acid ... [Pg.318]

Manganese(IV) oxide is a dark-brown solid, insoluble in water and dilute acids. Its catalytic decomposition of potassium chlor-ate(V) and hydrogen peroxide has already been mentioned. It dissolves slowly in alkalis to form manganates(lW), but the constitution of these is uncertain. It dissolves in ice-cold concentrated hydrochloric acid forming the complex octahedral hexachloromangan-ate(IV) ion ... [Pg.387]

The Mn ion is so unstable that it scarcely exists in aqueous solution. In acidic aqueous solution, manganic compounds readily disproportionate to form Mn ions and hydrated manganese(IV) oxide, Mn02 2H20 in basic solution these compounds hydroly2e to hydrous manganese(III) oxide, MnO(OH). Sulfuric acid concentrations of about 400 450 g/L are required to stabilize the noncomplexed Mn ion in aqueous solutions. [Pg.506]

Metal-Catalyzed Oxidation. Trace quantities of transition metal ions catalyze the decomposition of hydroperoxides to radical species and greatiy accelerate the rate of oxidation. Most effective are those metal ions that undergo one-electron transfer reactions, eg, copper, iron, cobalt, and manganese ions (9). The metal catalyst is an active hydroperoxide decomposer in both its higher and its lower oxidation states. In the overall reaction, two molecules of hydroperoxide decompose to peroxy and alkoxy radicals (eq. 5). [Pg.223]

Oxides of manganese and iron are often found deposited together. Similar conditions cause oxidation of both iron and manganese ions. Exposure to oxygenated water, chlorination, and some microbiological processes causes such oxidation. Often, a few percent chlorine is found in deposits, possibly because of associated chlorination. [Pg.72]

Manganese ions enzyme activators, 6,578 probes, 6,563 RNA polymerases activation, 6, 585 transport microbes, 6, 569 plants, 6, 572 Manganese oxide colloidal... [Pg.161]

The products of the reaction between bromide ions and permanganate ions, Mn04, in basic aqueous solution are solid manganese(IV) oxide, MnO>, and bromate ions. Balance the net ionic equation for the reaction. [Pg.608]

The set of all intermediate steps is called the reaction pathway. A given reaction (involving the same reactants and products) may occur by a single pathway or by several parallel pathways. In the case of invertible reactions, the pathway followed in the reverse direction (e.g., the cathodic) may or may not coincide with that of the forward direction (in this example, the anodic). For instance, the relatively simple anodic oxidation of divalent manganese ions which in acidic solutions yields tetrava-lent manganese ions Mn +— Mn -l-2e , can follow these two pathways ... [Pg.219]

Primary clay, for example kaolin, is colorless, and when such clay is heated to a high temperature it produces white ceramic materials. Most pottery, however, is colored its color is due to the fact that most of it was, and still is, made not from primary but from secondary clay. Secondary clay contains minerals other than clay, and colored metal ions in them endow the pottery with their color. Iron ions (in iron oxides), for example, tend to make pottery yellow, brown, or red, and manganese ions (in pyrolusite, a mineral composed of manganese oxide) make it either dark or black. [Pg.270]

The vanadium(IV) complex of salen in zeolite was found to be an effective catalyst for the room temperature epoxidation of cyclohexene using t-butyl hydroperoxide as oxidant.88 Well-characterized vanadyl bis-bipyridine complexes encapsulated in Y zeolite were used as oxidation catalysts.101 Ligation of manganese ions in zeolites with 1,4,7-triazacyclononanes gives rise to a binu-clear complex stabilized by the zeolites but allows oxidation with excellent selectivity (Scheme 7.4). [Pg.254]

The variety of functions of the catalyst is pronounced, in particular, in the technological catalytic oxidation of -paraffins to aliphatic acids [5]. This technology consists of several stages among which the central place is occupied by oxidation. It is conducted at 380 420 K in a series of reactors, with a mixture of salts of aliphatic acids of K+ and Mn2+ or Na+ and Mn2+ as the catalyst. The alkaline metal salt stabilizes (makes it more soluble and stable) the manganese salt [152]. Studies have revealed the multifunctional role of the catalyst (manganese ions) (Mn) [152-154]. [Pg.401]

Another situation is observed when salts or transition metal complexes are added to an alcohol (primary or secondary) or alkylamine subjected to oxidation in this case, a prolonged retardation of the initiated oxidation occurs, owing to repeated chain termination. This was discovered for the first time in the study of cyclohexanol oxidation in the presence of copper salt [49]. Copper and manganese ions also exert an inhibiting effect on the initiated oxidation of 1,2-cyclohexadiene [12], aliphatic amines [19], and 1,2-disubstituted ethenes [13]. This is accounted for, first, by the dual redox nature of the peroxyl radicals H02, >C(0H)02 and >C(NHR)02 , and, second, for the ability of ions and complexes of transition metals to accept and release an electron when they are in an higher- and lower-valence state. [Pg.586]


See other pages where Manganese ions, oxidation is mentioned: [Pg.317]    [Pg.363]    [Pg.379]    [Pg.385]    [Pg.366]    [Pg.504]    [Pg.502]    [Pg.521]    [Pg.345]    [Pg.288]    [Pg.553]    [Pg.298]    [Pg.299]    [Pg.302]    [Pg.312]    [Pg.312]    [Pg.313]    [Pg.313]    [Pg.313]    [Pg.638]    [Pg.691]    [Pg.780]    [Pg.444]    [Pg.170]    [Pg.218]    [Pg.395]    [Pg.734]    [Pg.146]    [Pg.481]    [Pg.166]    [Pg.259]    [Pg.402]    [Pg.411]    [Pg.505]    [Pg.317]   


SEARCH



Manganese ions

Manganese oxidation

Manganese-oxidizing

Oxidants manganese

Oxidations, free manganese ions

© 2024 chempedia.info