Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Major product

The major products of combustion are CO2, water, SO, and NO. The products of combustion are clearly beshminimized by making the process efficient in its use of energy through improved heat recovery and avoiding unnecessary incineration through minimization of process waste. [Pg.305]

MarkownikofT s rule The rule states that in the addition of hydrogen halides to an ethyl-enic double bond, the halogen attaches itself to the carbon atom united to the smaller number of hydrogen atoms. The rule may generally be relied on to predict the major product of such an addition and may be easily understood by considering the relative stabilities of the alternative carbenium ions produced by protonation of the alkene in some cases some of the alternative compound is formed. The rule usually breaks down for hydrogen bromide addition reactions if traces of peroxides are present (anti-MarkownikofT addition). [Pg.251]

Table 10.2 shows expected trends in specifications for some major products. [Pg.366]

The radical cation of 1 (T ) is produced by a photo-induced electron transfer reaction with an excited electron acceptor, chloranil. The major product observed in the CIDNP spectrum is the regenerated electron donor, 1. The parameters for Kaptein s net effect rule in this case are that the RP is from a triplet precursor (p. is +), the recombination product is that which is under consideration (e is +) and Ag is negative. This leaves the sign of the hyperfine coupling constant as the only unknown in the expression for the polarization phase. Roth et aJ [10] used the phase and intensity of each signal to detemiine the relative signs and magnitudes of the... [Pg.1601]

A more demanding dynamical study aimed to rationalize the product distribution in photochemical cycloaddition, looking at butadiene-butadiene [82]. A large number of products are possible, with two routes on the excited Si state leading back to channels on the ground state. The results are promising, as the MMVB dynamics find the major products found experimentally. They also... [Pg.303]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

The conventional electrochemical reduction of carbon dioxide tends to give formic acid as the major product, which can be obtained with a 90% current efficiency using, for example, indium, tin, or mercury cathodes. Being able to convert CO2 initially to formates or formaldehyde is in itself significant. In our direct oxidation liquid feed fuel cell, varied oxygenates such as formaldehyde, formic acid and methyl formate, dimethoxymethane, trimethoxymethane, trioxane, and dimethyl carbonate are all useful fuels. At the same time, they can also be readily reduced further to methyl alcohol by varied chemical or enzymatic processes. [Pg.220]

When acetic anhydride was in excess over nitric acid, acetyl nitrate and acetic acid were the only products. When the concentration of nitric acid was greater than 90 moles %, dinitrogen pentoxide, present as (N02+)(N0a ), was the major product and there were only small traces of acetyl nitrate. With lower concentrations of nitric acid the products were acetic acid, acetyl nitrate and dinitrogen pentoxide, the latter species being present as covalent molecules in this organic medium. A mixture of z moles of nitric acid and i mole of acetic anhydride has the same Raman spectrum as a solution of i mole of dinitrogen pentoxide in 2 moles of acetic acid. [Pg.79]

The next method Strike has for semi-direct amination is really weird, Strike is really exposing Strike s ignorance of chemistry with this dog. But if one looks hard at the articles cited, the potential is there. The authors came up with this little procedure that produced vicinal diamines out of alkenes [83]. Later they found that if they did a couple of things different, they would end up with a monoamine with the majority product being at the beta carbon. The following is a conjoining of the two paper s experimentals ... [Pg.186]

Oxidation of ethylene in alcohol with PdCl2 in the presence of a base gives an acetal and vinyl ether[106,107], The reaction of alkenes with alcohols mediated by PdCl2 affords acetals 64 as major products and vinyl ethers 65 as minor products. No deuterium incorporation was observed in the acetal formed from ethylene and MeOD, indicating that hydride shift takes place and the acetal is not formed by the addition of methanol to methyl vinyl etherjlOS], The reaction can be carried out catalytically using CuClj under oxygen[28]. [Pg.31]

Oxidative carbonylation can sometimes be achieved even in the absence of any oxidizing agent. As an example, unexpectedly diphenylcrotonolactone (537) was obtained as a major product by the carbonylation of diphenylaeety-... [Pg.99]

In the reaction of o-dibromobenzene, disubstitution is faster than monosubstitution, and the disubstituted product is obtained as a major product. Similarly, 1,2,4,5-tetrabromobenzene reacts with styrene to give the tetrasub-stituted product[29]. The bridged, annulated [2,2]paracyclophanedieiie 22 was... [Pg.130]

Under certain conditions, the /(-substitution products are obtained as major products[66]. Methyl vinyl ether reacts with bromonitrobenzene to give the f-methoxystyiene 64 in good yield in toluene at 120 "C by using Pd on carbon as... [Pg.137]

The cyclic carbamate (oxazoIidin-2-one) 313 is formed by the reaction of phenyl isocyanate (312) with vinyloxirane[I92]. Nitrogen serves as a nucleophile and attacks the carbon vicinal to the oxygen exclusively. The thermodynamically less stable Z-isomer 315 was obtained as a major product (10 I) by the reaction of 2-methoxy-l-naphthyI isocyanate (314) with a vinyloxir-... [Pg.332]

Formic acid behaves differently. The expected octadienyl formate is not formed. The reaction of butadiene carried out in formic acid and triethylamine affords 1,7-octadiene (41) as the major product and 1,6-octadiene as a minor product[41-43], Formic acid is a hydride source. It is known that the Pd hydride formed from palladium formate attacks the substituted side of tt-allylpalladium to form the terminal alkene[44] (see Section 2.8). The reductive dimerization of isoprene in formic acid in the presence of Et3N using tri(i)-tolyl)phosphine at room temperature afforded a mixture of dimers in 87% yield, which contained 71% of the head-to-tail dimers 42a and 42b. The mixture was treated with concentrated HCl to give an easily separable chloro derivative 43. By this means, a- and d-citronellol (44 and 45) were pre-pared[45]. [Pg.430]

Phenyl-1,4-hcxadicnc (122) is obtained as a major product by the codimerization of butadiene and styrene in the presence of a Lewis acid[110]. Pd(0)-catalyzed addition reaction of butadiene and aiiene (1 2) proceeds at 120 C to give a 3 1 mixture of trans- and c -2-methyl-3-methylene-l,5.7-octatriene (123)[lll]. [Pg.441]

In the coupling of the allenyl ester 7 with a terminal alkyne, an electron-deficient phosphine (Ph3P) gave the enyne-conjugated ester 8 as the major product, while an electron-rich phosphine (TDMPP or TTMPP) yielded the non-conjugated enyne esters ( )- and (Z)-9[4],... [Pg.451]

The reaction of l,4-bis(trimethylsilyl)-l,3-butadiyne (174) with disilanes, followed by treatment with methylmagnesium bromide, produces i,l,4,4-tetra(-trimethylsilyl)-l,2,3-butatriene (175) as a major product[96]. The reaction of octaethyltetrasilylane (176) with DMAD proceeds by ring insertion to give the six-membered ring compounds 177 and 178[97], The l-sila-4-stannacyclohexa-2,5-diene 181 was obtained by a two-step reaction of two alkynes with the disilanylstannane 179 via the l-sila-2-stannacyclobutane 180[98],... [Pg.493]

Ethyl /m s -2-butenyl sulfone (86) together with some ethyl vinyl sulfone are obtained by the reaction of ethylene and. SO2 in wet benzene using PdCl2. SO2 behaves mechanistically similarly to CO in this reaction[66]. Hydrosulfination of alkenes with SO2 and H2 is catalyzed by the Pd(dppp) complex. The sulfinic acid 87 is a primary product, which reacts further to give the. S-alkyl alkanethiosulfonates 88 as the major product, and 89 and the sulfonic acid 90 as minor products[67]. [Pg.523]

The issue of regioselectivity arises with arylhydrazones of unsymmetrical ketones which can form two different enehydrazine intermediates. Under the conditions used most commonly for Fischer cyclizations, e g. ethanolic HCI, the major product is usually the one arising from the more highly substituted enehydrazine. Thus methyl ketones usually give 2-methy indoles and cycliz-ation occurs in a branched chain in preference to a straight chain. This regioselectivity is attributed to the greater stability of the more substituted enhydrazine and its dominance of the reaction path. [Pg.56]

In the reaction of 4-substituted 2-aminoselenazoles with ethyl propiolate and dimethylacetylene dicarboxylate. the major products obtained from such a condensation are substituted 7H-selenazolo[3,2-a]pyrimidin-7-ones (5) and not the alternative isomeric substituted 5H-selenazoles[3,2-a]pyrimidin-5-ones (6). Distinction between the alternative structures was based on infrared, ultraviolet, and NMR data (Scheme... [Pg.257]

The thermal decomposition of thia2ol-2-yl-carbonyl peroxide in benzene, bromobenzene, or cumene affords thiazole together with good yields of 2-arylthiazoles but negligible amounts of esters. Thiazol-4-ylcarbonyl peroxide gives fair yields of 4-arylthiazoles, but the phenyl ester is also a major product in benzene, indicating reactions of both thiazol-4-yl radicals and thiazol-4-carbonyloxy radicals. Thiazole-5-carbonyl peroxide gives... [Pg.112]

Except for the biochemical example just cited the stractures of all of the alcohols m Section 5 9 (including those m Problem 5 13) were such that each one could give only a single alkene by p elimination What about ehmmahon m alcohols such as 2 methyl 2 butanol m which dehydration can occur in two different directions to give alkenes that are conshtutional iso mers Here a double bond can be generated between C 1 and C 2 or between C 2 and C 3 Both processes occur but not nearly to the same extent Under the usual reachon con dihons 2 methyl 2 butene is the major product and 2 methyl 1 butene the minor one... [Pg.204]

Zaitsev s rule as applied to the acid catalyzed dehydration of alcohols is now more often expressed in a different way elimination reactions of alcohols yield the most highly substituted alkene as the major product Because as was discussed in Section 5 6 the most highly substituted alkene is also normally the most stable one Zaitsev s rule is sometimes expressed as a preference for predominant formation of the most stable alkene that could arise by elimination... [Pg.205]

Dimethyl 1 butene 2 3 Dimethyl 2 butene (minor product) (major product)... [Pg.205]

The major product is 2 3 dimethyl 2 butene It has a tetrasubstituted double bond and IS more stable than 2 3 dimethyl 1 butene which has a disubstituted double bond The major alkene arises by loss of a hydrogen from the p carbon that has fewer attached hydrogens (C 3) rather than from the p carbon that has the greater number of hydrogens (C 1) ... [Pg.205]

Loss of a proton from C 3 yields the major product 2 3 dimethyl 2 butene (This alkene has a tetrasubstituted double bond)... [Pg.207]


See other pages where Major product is mentioned: [Pg.85]    [Pg.2703]    [Pg.628]    [Pg.37]    [Pg.76]    [Pg.76]    [Pg.79]    [Pg.95]    [Pg.140]    [Pg.92]    [Pg.266]    [Pg.274]    [Pg.67]    [Pg.133]    [Pg.358]    [Pg.362]    [Pg.426]    [Pg.469]    [Pg.478]    [Pg.481]    [Pg.513]    [Pg.95]    [Pg.205]    [Pg.206]   
See also in sourсe #XX -- [ Pg.188 , Pg.189 , Pg.211 , Pg.211 ]

See also in sourсe #XX -- [ Pg.354 ]

See also in sourсe #XX -- [ Pg.98 , Pg.99 ]




SEARCH



Alkenes, cyclization major products

Alkynes, cyclization major products

Catalytic cracking major products

Data matrices major product

Fabricating products major families

Identification of the Major Thioacidolysis Products

Lipoxygenase reaction, major products

Liquid phase major products

Major Commercial ES Products

Major Suppliers and their Products

Major product matrix

Major radical products formed in irradiated DNA

Major sectors and their products

Petroleum distillation products, major

Predictions major elimination product

Properties of Major Refinery Products

Some Major Rubber Products

Trade in Major Nitrogen Products

Water radiolysis major products

© 2019 chempedia.info