Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnesium extraction

Cobalt/nickel separation Zinc and iron extraction Magnesium extraction... [Pg.6]

Case Study 3 Magnesium Extraction from Seawater... [Pg.201]

CASE STUDY 3 MAGNESIUM EXTRACTION FROM SEAWATER 10.4.1 Introduction... [Pg.208]

Dow process The process for the extraction of magnesium from sea-water by precipitation of Mg(OH)2 by Ca(OH)2 followed by solution of the hydroxide in hydrochloric acid. [Pg.146]

Beryllium is added to copper to produce an alloy with greatly increased wear resistance it is used for current-carrying springs and non-sparking safety tools. It is also used as a neutron moderator and reflector in nuclear reactors. Much magnesium is used to prepare light nieial allo>s. other uses include the extraction of titanium (p. 370) and in the removal of oxygen and sulphur from steels calcium finds a similar use. [Pg.124]

The extraction of titanium is still relatively costly first the dioxide Ti02 is converted to the tetrachloride TiCl4 by heating with carbon in a stream of chlorine the tetrachloride is a volatile liquid which can be rendered pure by fractional distillation. The next stage is costly the reduction of the tetrachloride to the metal, with magnesium. must be carried out in a molybdenum-coated iron crucible in an atmospheric of argon at about 1100 K ... [Pg.370]

Dichlorobutane. Place 22-5g. of redistilled 1 4-butanediol and 3 ml. of dry pyridine in a 500 ml. three necked flask fitted with a reflux condenser, mechanical stirrer and thermometer. Immerse the flask in an ice bath. Add 116 g. (71 ml.) of redistilled thionyl chloride dropwise fix>m a dropping funnel (inserted into the top of the condenser) to the vigorously stirred mixture at such a rate that the temperature remains at 5-10°. When the addition is complete, remove the ice bath, keep the mixture overnight, and then reflux for 3 hours. Cool, add ice water cautiously and extract with ether. Wash the ethereal extract successively with 10 per cent sodium bicarbonate solution and water, dry with anhydrous magnesium sulphate and distil. Collect the 1 4-dichloro-butane at 55-5-56-5°/14 mm. the yield is 35 g. The b.p. under atmospheric pressure is 154 155°. [Pg.275]

Into a 500 ml. three-necked flask, provided with a mechanical stirrer, a gas inlet tube and a reflux condenser, place 57 g. of anhydrous stannous chloride (Section 11,50,11) and 200 ml. of anhydrous ether. Pass in dry hydrogen chloride gas (Section 11,48,1) until the mixture is saturated and separates into two layers the lower viscous layer consists of stannous chloride dissolved in ethereal hydrogen chloride. Set the stirrer in motion and add 19 5 g. of n-amyl cyanide (Sections III,112 and III,113) through the separatory funnel. Separation of the crystalline aldimine hydrochloride commences after a few minutes continue the stirring for 15 minutes. Filter oflF the crystalline solid, suspend it in about 50 ml. of water and heat under reflux until it is completely hydrolysed. Allow to cool and extract with ether dry the ethereal extract with anhydrous magnesium or calcium sulphate and remove the ether slowly (Fig. II, 13, 4, but with the distilling flask replaced by a Claisen flask with fractionating side arm). Finally, distil the residue and collect the n-hexaldehyde at 127-129°. The yield is 19 g. [Pg.324]

Pour the reaction mixture into a 1-litre round-bottomed flaak, add 250 ml. of water, fit a still head and a condenser for downward distillation (Fig. II, 13, 3, but without the thermometer). Distil the mixture until about 125 ml. of distillate (two layers) have been collected. Saturate with salt (about 30 g. are required), and separate the upper layer of cj/cZohexanone extract the aqueous layer with 25-30 ml. of ether and combine the ether extract with the cycZohexanone layer. Dry with about 6 g. of anhydrous sodium or magnesium sulphate, filter the solution into a distilling flask of suitable size to which a condenser has previously been attached. Distil oflF the ether from a water bath—a beaker containing warm water is satisfactory. Distil the residual liquid from an air bath or a wire gauze, and collect the cyclohexanone at 153-156°. The yield is 16 g. [Pg.337]

Equip a 1-litre three-necked flask with a mechanical stirrer, a separatory funnel and a thermometer. Place a solution of 47 g. of sodium cyanide (or 62 g. of potassium cyanide) in 200 ml. of water in the flask, and introduce 58 g. (73-5 ml.) of pure acetone. Add slowly from the separatory fumiel, with constant stirring, 334 g. (275 ml.) of 30 per cent, sulphuric acid by weight. Do not allow the temperature to rise above 15-20° add crushed ice, if necessary, to the mixture by momentarily removing the thermometer. After all the acid has been added continue the stirring for 15 minutes. Extract the reaction mixture with three 50 ml. portions of ether, dry the ethereal extracts with anhydrous sodium or magnesium sulphate, remove most of the ether on a water bath and distil the residue rapidly under diminished pressure. The acetone cyanohydrin passes over at 80-82°/15 mm. The yield is 62 g. [Pg.348]

To obtain a maximum yield of the acid it is necessary to hydrolyse the by-product, iaoamyl iaovalerate this is most economically effected with methyl alcoholic sodium hydroxide. Place a mixture of 20 g. of sodium hydroxide pellets, 25 ml. of water and 225 ml. of methyl alcohol in a 500 ml. round-bottomed flask fitted with a reflux (double surface) condenser, warm until the sodium hydroxide dissolves, add the ester layer and reflux the mixture for a period of 15 minutes. Rearrange the flask for distillation (Fig. II, 13, 3) and distil off the methyl alcohol until the residue becomes pasty. Then add about 200 ml. of water and continue the distfllation until the temperature reaches 98-100°. Pour the residue in the flask, consisting of an aqueous solution of sodium iaovalerate, into a 600 ml. beaker and add sufficient water to dissolve any solid which separates. Add slowly, with stirring, a solution of 15 ml. of concentrated sulphuric acid in 50 ml. of water, and extract the hberated acid with 25 ml. of carbon tetrachloride. Combine this extract with extract (A), dry with a httle anhydrous magnesium or calcium sulphate, and distil off the carbon tetrachloride (Fig. II, 13, 4 150 ml. distiUing or Claisen flask), and then distil the residue. Collect the wovaleric acid 172-176°. The yield is 56 g. [Pg.356]

Method B. Reflux a mixture of 101 g. of sebacic acid, 196 g. (248 ml.) of absolute ethjd alcohol and 20 ml. of concentrated sulphuric acid for 12 hours. Distil oft about half of the alcohol on a water bath dilute the residue with 500-750 ml. of water, remove the upper layer of crude ester, and extract the aqueous layer with ether. Wash the combined ethereal extract and crude ester with water, then with saturated sodium bicarbonate solution until effervescence ceases, and finally with water. Dry with anhydrous magnesium or sodium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure. B.p. 155-157°/6 mm. Yield llOg. [Pg.387]

Place a mixture of 25 5 g. of n-valerio acid (Sections 111,83 and 111,84), 30 g. (37 -5 ml.) of dry n-propyl alcohol, 50 ml. of sodium-dried benzene and 10 g. (5-5 ml.) of concentrated sulphuric acid in a 250 ml. round-bottomed flask equipped with a vertical condenser, and reflux for 36 hours. Pour into 250 ml. of water and separate the upper layer. Extract the aqueous layer with ether, and add the extract to the benzene solution. Wash the combined extracts with saturated sodium bicarbonate solution until effervescence ceases, then with water, and dry with anhydrous magnesium sulphate. Remove the low boiling point solvents by distillation (use the apparatus of Fig. II, 13,4 but with a Claisen flask replacing the distilling flask) the temperature will rise abruptly and the fi-propyl n-valerate will pass over at 163-164°. The yield is 28 g. [Pg.387]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]


See other pages where Magnesium extraction is mentioned: [Pg.321]    [Pg.564]    [Pg.306]    [Pg.468]    [Pg.414]    [Pg.358]    [Pg.419]    [Pg.280]    [Pg.300]    [Pg.392]    [Pg.321]    [Pg.564]    [Pg.306]    [Pg.468]    [Pg.414]    [Pg.358]    [Pg.419]    [Pg.280]    [Pg.300]    [Pg.392]    [Pg.95]    [Pg.288]    [Pg.256]    [Pg.258]    [Pg.259]    [Pg.305]    [Pg.337]    [Pg.343]    [Pg.350]    [Pg.355]    [Pg.356]    [Pg.358]    [Pg.359]    [Pg.359]    [Pg.360]    [Pg.384]    [Pg.410]    [Pg.419]    [Pg.433]    [Pg.461]    [Pg.469]    [Pg.480]    [Pg.481]   
See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.347 ]

See also in sourсe #XX -- [ Pg.347 ]

See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.258 , Pg.468 ]

See also in sourсe #XX -- [ Pg.276 ]

See also in sourсe #XX -- [ Pg.120 ]

See also in sourсe #XX -- [ Pg.349 ]

See also in sourсe #XX -- [ Pg.140 ]

See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Aluminum magnesium residue, extraction

Extraction magnesium chloride based salts

Magnesium extraction from seawater

Seawater magnesium metal, extraction

© 2024 chempedia.info