Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macromolecule definition

Small region in a macromolecule from which at least four chains emanate and which is formed by reactions involving sites or groups on existing macromolecules or by interaetions between existing macromolecules. (Definition 1.59 in [1] and Gold Book online, 1996 entry [2].)... [Pg.227]

An experimental teclmique that is usefiil for structure studies of biological macromolecules and other crystals with large unit cells uses neither the broad, white , spectrum characteristic of Lane methods nor a sharp, monocliromatic spectrum, but rather a spectral band with AX/X 20%. Because of its relation to the Lane method, this teclmique is called quasi-Laue. It was believed for many years diat the Lane method was not usefiil for structure studies because reflections of different orders would be superposed on the same point of a film or an image plate. It was realized recently, however, that, if there is a definite minimum wavelengdi in the spectral band, more than 80% of all reflections would contain only a single order. Quasi-Laue methods are now used with both neutrons and x-rays, particularly x-rays from synclirotron sources, which give an intense, white spectrum. [Pg.1381]

The first attempt to formulate a systematic nomenclature for polymers was based on the smallest repeating stmctural unit it was pubHshed in 1952 by a Subcommission on Nomenclature of the lUPAC Commission on Macromolecules (95). The report covered not only the naming of polymers, but also symbology and definitions of terms. However, these nomenclature recommendations did not receive widespread acceptance. Further progress was slow, with a report on steric regularity in high polymers pubHshed in 1962 and updated in 1966 (96). [Pg.120]

Contrary to widespread opinion, the value of Ea is not a constant quantity. As was proved previously [52], the value of E is variable, since it depends on the ordering of macromolecules in the amorphous material of the fiber. At the same time, one can suppose that this ordering will be affected by the specificity of the fine structure of the fiber, and particularly by the type of substructure of the fiber. The relationship determining the modulus Ea appropriate for a definite type of fiber substructure can be derived from Eq. (11) when appropriate values of A are assumed. In the case of the microfibrillar substructure, i.e., for A < I, typical of PET fibers stretched, but not subjected to annealing, this equation has the form [52] ... [Pg.849]

An interesting aspect of the benzofuran cationic polymerization was uncovered by Natta, Farina, Peraldo and Bressan who reported in 196160,61 that an asymmetric synthesis of an optically active poly(benzofuran) could be achieved by using AlCl2Et coupled with (-)j3-phenylalanine, (+)camphorsulphonic acid or with (-)brucine. The optical activity was definitely due to the asymmetric carbon atoms in the polymer chain, indicating that at least some of the polymer s macromolecules possessed a di-isotactic structure, v/ z.62 ... [Pg.64]

Unfortunately, even for low molecular weight material it is difficult to obtain clear experimental evidence for a roughening transition [71]. This is mainly due to the fact that during growth the interface generally assumes a metastable shape and relaxation times are long and increase with crystal size. Therefore we certainly cannot expect a definitive answer for macromolecules. We shall therefore just make several comments which hopefully will be of use when reading the literature. [Pg.305]

In order to discuss the various techniques we must distinguish between diffusive and non-diffusive systems (J8). Diffusive systems, such as liquids, are characterized by the eventual diffusion of particles over all of the available space non-diffusive systems such as solids, glasses and macromolecules with a definite average structure are characterized by time independent average positions around which the atoms fluctuate. [Pg.110]

By definition, in a solution all ions belong to the same phase, even though counterions may cluster more or less diffusely around the macroions. When significant amounts of a simple 1 1 electrolyte (such as KCl) are added to a polyelectrolyte solution, dissociation of the polyelectrolyte macromolecule is repressed in an extreme case the polyelectrolyte may be salted out. An undissociated polyacid may be precipitated by generous addition of a simple acid such as HCl. [Pg.451]

The colloidal particles can be crystalline or constitnte an amorphons agglomeration of individual molecnles. The definition also includes nonaggregated large macromolecules such as proteins. An arbitrary distinction is made between hydrophobic colloids (sols) and hydrophilic colloids (gels), which depends on the degree and type of interaction with the aqneons solvent. [Pg.600]

These two examples show that regular patterns can evolve but, by definition, dissipative structures disappear once the thermodynamic equilibrium has been reached. When one wants to use dissipative structures for patterning of materials, the dissipative structure has to be fixed. Then, even though the thermodynamic instability that led to and supported the pattern has ceased, the structure would remain. Here, polymers play an important role. Since many polymers are amorphous, there is the possibility to freeze temporal patterns. Furthermore, polymer solutions are nonlinear with respect to viscosity and thus strong effects are expected to be seen in evaporating polymer solutions. Since a macromolecule is a nanoscale object, conformational entropy will also play a role in nanoscale ordered structures of polymers. [Pg.191]

An aqueous colloidal polymeric dispersion by definition is a two-phase system comprised of a disperse phase and a dispersion medium. The disperse phase consists of spherical polymer particles, usually with an average diameter of 200-300 nm. According to their method of preparation, aqueous colloidal polymer dispersions can be divided into two categories (true) latices and pseudolatices. True latices are prepared by controlled polymerization of emulsified monomer droplets in aqueous solutions, whereas pseudolatices are prepared starting from already polymerized macromolecules using different emulsification techniques. [Pg.274]

The above-mentioned statistical characteristics of the chemical structure of heteropolymers are easy to calculate, provided they are Markovian. Performing these calculations, one may neglect finiteness of macromolecules equating to zero elements va0 of transition matrix Q. Under such an approach vector X of a copolymer composition whose components are X = P(M,) and X2 = P(M2) coincides with stationary vector n of matrix Q. The latter is, by definition, the left eigenvector of this matrix corresponding to its largest eigenvalue A,i, which equals unity. Components of the stationary vector... [Pg.147]

The development of a quantitative theory of a free-radical copolymerization implies the derivation of equations for the rate of the monomers depletion and the statistical characteristics of the chemical structure of macromolecules present in the reaction system at the given conversion p of monomers. Elaborating such a theory one should take into account a highly important peculiarity inherent to any free-radical copolymerization. This peculiarity is that the characteristic time of a macroradical life is appreciably less than the time of the process duration. Consequently, its products represent definitely... [Pg.183]

The characterisation of polymers is very difficult because of various inherent weaknesses observed in case of various polymers. The difficulty in characterisation can be well grasped from the fact that unlike low Molecular weight compounds, like benzene (M=78), methacrylate (M =100.12), vinyl chloride (M=62.5), etc. which have a fixed value o/Molecular weight, the polymers which are macromolecules, do not have a certain definite and permanent Molecular weight. For example, the Molecular weights of polystyrene varies between 50,000 to 10 million. [Pg.70]

Le Chatelier s principle Le ChOtelier s principle states that if a chemical system at equilibrium is stressed (disturbed), it will reestablish equilibrium by shifting of the reactions involved, limiting reactant The limiting reactant is the reactant that is used up first in a chemical reaction, line spectrum A line spectrum is a series of fine lines of colors representing wavelengths of photons that are characteristic of a particular element, liquid A liquid is a state of matter that has a definite volume but no definite shape, macromolecules Macromolecules are extremely large molecules. [Pg.362]


See other pages where Macromolecule definition is mentioned: [Pg.79]    [Pg.237]    [Pg.274]    [Pg.397]    [Pg.930]    [Pg.936]    [Pg.941]    [Pg.79]    [Pg.193]    [Pg.554]    [Pg.119]    [Pg.21]    [Pg.169]    [Pg.146]    [Pg.79]    [Pg.123]    [Pg.135]    [Pg.285]    [Pg.174]    [Pg.176]    [Pg.211]    [Pg.181]    [Pg.652]    [Pg.64]    [Pg.71]    [Pg.197]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Flexible macromolecules, definition

© 2024 chempedia.info