Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macrocyclization template effects

The use of metals for prearranging reaction centers as neighboring groups has a special value in the production of macrocycles (template effect). Although these ligands can be sometimes prepared directly, the addition of metal ion during the synthesis will often increase the yield, modify the stereochemical nature of the product, or even be essential in the buildup of the macrocycle. There have been few mechanistic studies of these processes. The alkali and alkaline-earth metal ions can promote the formation of benzo[18]crown-6 in methanol ... [Pg.301]

The template effects of potassium and lithium ions are responsible for the efficiency of the synthesis of macrocyclic ligands in 18-CROWN-6 and2,2.7,7,12,12,17,l 7-OCTAMETHYL-21,22,23,24-TETRAOXAPER-HYDROQUATERENE. [Pg.129]

Other indications of the template effect have been offered as well. Fenton, Cook and Nowell reported that the condensation of pyridine-2,6-dicarbaldehyde with 1,11-diamino-3,6,9-trioxaundecane in 1 1 molar ratio in butanol leads only to resinous gums . In the presence of equimolar amounts of Pb(SCN)2, the macrocycle illustrated in Eq. (2.5) was obtained in good yield . [Pg.16]

Newkome and co-workers have demonstrated the operation of a template effect in the formation of a pyrido-ester-crown. In the reaction shown in Eq. (2.8), they treated 2-clTloronicotinoyl cliloride with either the disodium or dipotassium salt of pentaethylene glycol. TJie two reactions were conducted under identical conditions except for the presence of sodium vs. potassium cations. Since the product is a six-oxygen macrocycle, its formation would be expected to be favored by K" rather than Na" counter ions for the glycolate. In fact, the yields of crown-lactone were 30% and 48% respectively when Na" and K" were the templating cations. [Pg.17]

There is probably no better evidence for a template effect than its application directly in the solution of a synthetic problem. Rastetter and PhiUion have utilized a substituted 19-crown-6 compound (shown below in Eq. 2.9) in the formation of macrocyclic lactones. Although there were certain experimental variations and the the possibility of intermolecular potassium ion complexation, the overall formation of lactone was favorable. [Pg.17]

It is interesting to note that although the first examples of template effects were observed in nitrogen macrocycles (see chapter 2) no template effect appears to operate in the synthesis of 72. Richman and Atkins note this in their original report . The authors replaced the sodium cation with tetramethylammonium cations and still obtained greater than 50% yield of tetra-N-tosyl-72. Shaw considered this problem and suggested that because of the bulky N-tosyl groups, .. . the loss of internal entropy on cyclization is small He offered this as an explanation for the apparent lack of a template effect in the cyclization. [Pg.163]

We have not attempted to cover all or even most aspects of crown chemistry and some may say that the inclusions are eclectic. We felt that anyone approaching the field would need an appreciation for the jargon currently abounding and for the so-called template effect since the latter has a considerable bearing on the synthetic methodology. We have, therefore, included brief discussions of these topics in the first two chapters. In chapters 3—8, we have tried to present an overview of the macrocyclic polyethers which have been prepared. We have taken a decidedly organic tack in this attempting to be comprehensive in our inclusion of alkali and alkaline earth cation binders rather than the compounds of use in transition metal chemistry. Nevertheless, many of the latter are included in concert with their overall importance. [Pg.417]

Template effects have been used in rotaxane synthesis to direct threading of the axle through the wheel. Since macrocycHc compounds such as cyclodextrins, crown ethers, cyclophanes, and cucurbiturils form stable complexes with specific guest molecules, they have been widely used in the templated synthesis of rotax-anes as ring (wheel) components. Here, we briefly discuss macrocycles used in the synthesis of rotaxane dendrimers and their important features. [Pg.115]

Hawthorne and co-workers have also produced a series of macrocyclic Lewis acid hosts called mercuracarborands (156, 157, and 158) (Fig. 84) with structures incorporating electron-withdrawing icosahedral carboranes and electrophilic mercury centers. They were synthesized by a kinetic halide ion template effect that afforded tetrameric cycles or cyclic trimers in the presence or absence of halide ion templates, respectively.163 These complexes, which can bind a variety of electron-rich guests, are ideal for catalytic and ion-sensing applications, as well as for the assembly of supramolecular architectures. [Pg.83]

Two possible roles for the metal ion in a template reaction have been delineated (Thompson Busch, 1964). First, the metal ion may sequester the cyclic product from an equilibrium mixture such as, for example, between products and reactants. In this manner the formation of the macrocycle is promoted as its metal complex. The metal ion is thus instrumental in shifting the position of an equilibrium - such a process has been termed a thermodynamic template effect. Secondly, the metal ion may direct the steric course of a condensation such that formation of the required cyclic product is facilitated. This process has been called the kinetic template effect. [Pg.28]

G. A. Melson, ed. Coordination Chemistry of Macrocyclic Compounds, Plenum, NY 1979 contains several chapters in which the template effect is utilised J. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge 1989. [Pg.326]

The highest flexibility for a variation of the functional group and the chains X and Y (i.e. the size of the rim of the lamp shade) will be realiad when the synthesis of 3 is convergent and modular (Scheme 1). Amide bonds can easily be formed in macrocyclizations [13], therefore macrocyclic diamines 7 and diacyl dichlorides 8 had to be prepared. For the synthesis of macrocyclic diamines 7, also a large number of reactions are known. However, in this case a reduction of a macrocyclic diamide could not be achieved [11]. Therefore, another route was used the formation of macrocyclic diimines 6 (bis-Schiff bases) followed by NaBH4 reduction to the macrocyclic diamines 7. This approach has the advantage that for the construction of macrocyclic diimines 6, the metal ion template effect [14] may be exploited. [Pg.63]

Liquid-liquid PTC would seem to be convenient for the synthesis of crown ethers and derivatives. But most still use conventional conditions,28,29 probably because the synthesis of macrocyclic crown ethers gives better results when Na+ or K+ ions are involved. These ions can induce a template effect with the polyethyleneoxy chain 63. [Pg.195]

An essential feature of template reactions of both the thermodynamic and kinetic type is the formation of a new chelate ring. One of the main difficulties in a discussion of mechanistic aspects of template reactions is the inevitable mixture and overlap of mechanistic effects. Those reactions which clearly exhibit a kinetic template effect could also depend to some extent on a thermodynamic one. Also, in some multistep macrocyclization processes, for example, both effects could be involved. Despite the inherent difficulties, the following discussion in this section will be subdivided into two, to cope predominantly with the thermodynamic and kinetic template effects. A further subdivision of thermodynamic and equilibrium effects will not be made. [Pg.434]

The most important reaction of this type is the formation of imine bonds and Schiff bases. For example, salicylaldehyde and a variety of primary amines undergo reaction to yield the related imines, which can be used as ligands in the formation of metal complexes. However, it is often more desirable to prepare such metal complexes directly by reaction of the amine and the aldehyde in the presence of the metal ion, rather than preform the imine.113 As shown in Scheme 31, imine formation is a reversible process and isolation of the metal complex results from its stability, which in turn controls the equilibrium. It is possible, and quite likely, that prior coordination of the salicylaldehyde to the metal ion results in activation of the carbonyl carbon to amine nucleophilic attack. But it would be impossible for a precoordinated amine to act as a nucleophile and consequently no kinetic template effect could be involved. Numerous macrocyclic chelate systems have been prepared by means of imine bond formation (see Section 61.1.2.1). In mechanistic terms, the whole multistep process could occur without any geometrical influence on the part of the metal ion, which could merely act to stabilize the macrocycle in complex formation. On the other hand,... [Pg.434]

The hexahydropyrimidine (58), formed from l-phenylpropane-l,2-dione and propane-1,3-diamine, is an excellent precursor for the a-diimine macrocyclic complexes (60), presumably via the amino ketone (59) (Scheme 36).126 In this case, intramolecular cyclization of (59) to (58) is reversible, so that the metal ion can exert a thermodynamic template effect in formation of the complex (60). This represents a further example of a long-known phenomenon in which a metal ion can stabilize an a-diimine structure by virtue of the formation of stable five-membered chelate rings. Many 2-hydroxy- or 2-mercapto-amines undergo reaction with a-dicarbonyl compounds to yield heterocyclic compounds rather than a-diimines. However, in the presence of suitable metal... [Pg.435]

One of the most spectacular and useful template reactions is the Curtis reaction , in which a new chelate ring is formed as the result of an aldol condensation between a methylene ketone or inline and an imine salt. The initial example of this reaction was the formation of a macrocyclic nickel(II) complex from tris(l,2-diaminoethane)nickel(II) perchlorate and acetone (equation 53).182 The reaction has been developed by Curtis and numerous other workers and has been reviewed.183 In mechanistic terms there is some circumstantial evidence to suggest that the nucleophile is an uncoordinated aoetonyl carbanion which adds to a coordinated imine to yield a coordinated amino ketone (equation 54). If such a mechanism operates then the template effect is largely, if not wholly, thermodynamic in nature, as described for imine formation. Such a view is supported by the fact that the free macrocycle salts can be produced by acid catalysis alone. However, this fact does not... [Pg.449]

Template reactions between a-diketones and diamines have been used for the synthesis of complexes of macrocyclic ligands such as (38)78 and (39).79 Some insight into the mechanism of the formation of these macrocycles has been provided by some recent work which shows the value of the thermodynamic template effect (Scheme 6).80... [Pg.162]

What should we do to observe a three-dimensional template effect First, we should choose a reaction type that we know to be effective for the formation of macrocyclic ligands and extend the methodology to a kinetically inert cP or d6 metal centre. Let us reconsider the reaction, that we first encountered in Fig. 6-11. In this reaction, a dioximato complex reacted with BF3 to give the nickel(n) complex of a dianionic macrocycle (Fig. 7-1). [Pg.183]

We have already looked at three key Schiff base macrocycles (Figure 3.56), which were amongst the first artificial metal macrocycle compounds to be synthesised. These compounds are generally formed by thermodynamic template effects because, unless water is removed during the course of the reaction, the condensation is reversible, allowing complexation to sequester the most stable metal-product... [Pg.204]

Make brief explanatory notes on the following concepts. Source material may be found in both Chapters 1 and 3 (a) the template effect (b) the chelate and macrocyclic effects (c) the high dilution technique in macrocyclic synthesis and (d) preorganisation and complementarity. [Pg.252]

Such complexes form a precursor to a full discussion of the vast and highly topical field of self-assembly (Chapter 10). We consider them here since they resemble structurally the types of compounds discussed in Section 4.7, but unlike metal-based anion receptors the simple thermodynamic equilibrium between host, anion and complex is not the only process occurring in solution. In fact multiple equilibria are occurring covering all possible combinations of interaction between anions, cations and ligands. These systems have the appeal that the formation of particular metal coordination complexes are thus subject to thermodynamic anion templating (cf. the thermodynamic template effect in macrocycle synthesis, Section 3.9.1) and vice versa. [Pg.334]

In contrast, the thermodynamic template effect in macrocycle synthesis is a process by which the presence of a metal ion template stabilises thermodynamically, or removes (e.g. by precipitation) one particular (usually cyclic) product from an equilibrating mixture, driving the equilibrium towards this thermodynamic minimum. This leads us to the conclusion that any thermodynamically stabilising influence may drive an equilibrium mixture towards a particular product according to Le Chatalier s Principle (in an equilibrating situation, the system will react to diminish the effects of externally applied changes in conditions). [Pg.638]


See other pages where Macrocyclization template effects is mentioned: [Pg.12]    [Pg.597]    [Pg.49]    [Pg.160]    [Pg.479]    [Pg.212]    [Pg.170]    [Pg.68]    [Pg.116]    [Pg.190]    [Pg.435]    [Pg.443]    [Pg.162]    [Pg.176]    [Pg.185]    [Pg.186]    [Pg.193]    [Pg.204]    [Pg.183]    [Pg.171]    [Pg.189]    [Pg.190]    [Pg.627]    [Pg.627]    [Pg.637]    [Pg.638]    [Pg.849]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 , Pg.388 ]




SEARCH



Macrocycle/macrocyclic effect

Macrocyclic effect

Templating effect

© 2024 chempedia.info