Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low vapor pressure

Liquid chromatography, having a resolving power generally less than that of gas phase chromatography, is often employed when the latter cannot be used, as in the case of samples containing heat-sensitive or low vapor-pressure compounds. [Pg.26]

It is one of four metals — mercury, cesium, and rubidium — which can be liquid near room temperature and, thus, can be used in high-temperature thermometers. It has one of the longest liquid ranges of any metal and has a low vapor pressure even at high temperatures. [Pg.87]

The choice of the solvent also has a profound influence on the observed sonochemistry. The effect of vapor pressure has already been mentioned. Other Hquid properties, such as surface tension and viscosity, wiU alter the threshold of cavitation, but this is generaUy a minor concern. The chemical reactivity of the solvent is often much more important. No solvent is inert under the high temperature conditions of cavitation (50). One may minimize this problem, however, by using robust solvents that have low vapor pressures so as to minimize their concentration in the vapor phase of the cavitation event. Alternatively, one may wish to take advantage of such secondary reactions, for example, by using halocarbons for sonochemical halogenations. With ultrasonic irradiations in water, the observed aqueous sonochemistry is dominated by secondary reactions of OH- and H- formed from the sonolysis of water vapor in the cavitation zone (51—53). [Pg.262]

Health and Safety Factors. Butanediol is much less toxic than its unsaturated analogs. It is neither a primary skin irritant nor a sensitizer. Because of its low vapor pressure, there is ordinarily no inhalation problem. As with all chemicals, unnecessary exposure should be avoided. The LD q for white rats is 1.55 g/kg. [Pg.109]

Compounds having low vapor pressures at room temperature are treated in water-cooled or air-cooled condensers, but more volatile materials often requite two-stage condensation, usually water cooling followed by refrigeration. Minimising noncondensable gases reduces the need to cool to extremely low dew points. Partial condensation may suffice if the carrier gas can be recycled to the process. Condensation can be especially helpful for primary recovery before another method such as adsorption or gas incineration. Both surface condensers, often of the finned coil type, and direct-contact condensers are used. Direct-contact condensers usually atomize a cooled, recirculated, low vapor pressure Hquid such as water into the gas. The recycle hquid is often cooled in an external exchanger. [Pg.389]

Primary human skin irritation of tetradecanol, hexadecanol, and octadecanol is nil they have been used for many years ia cosmetic creams and ointments (24). Based on human testing and iudustrial experience, the linear, even carbon number alcohols of 6—18 carbon atoms are not human skin sensitizers, nor are the 7-, 9- and 11-carbon alcohols and 2-ethylhexanol. Neither has iudustrial handling of other branched alcohols led to skin problems. Inhalation hazard, further mitigated by the low vapor pressure of these alcohols, is slight. Sustained breathing of alcohol vapor or mist should be avoided, however, as aspiration hazards have been reported (25). [Pg.446]

Physical requirements of fluid fertilizers include freedom from sediments, suitably low viscosity, low vapor pressure, and noncorrosivity with regard to available handling equipment. Using anhydrous ammonia, the chief physical concerns, are in the safety of handling under pressure and the minimizing of vapor loss during injection into the sod. [Pg.215]

Mote stable catalysts ate obtained by using fluorinated graphite or fluorinated alumina as backbones, and Lewis acid halides, such as SbF, TaF, and NbF, which have a relatively low vapor pressure. These Lewis acids ate attached to the fluorinated soHd supports through fluorine bridging. They show high reactivity in Friedel-Crafts type reactions including the isomerization of straight-chain alkanes such as / -hexane. [Pg.565]

Concern for personnel exposure to hydrazine has led to several innovations in packaging to minimize direct contact with hydrazine, eg, Olin s E-Z dmm systems. Carbohydrazide was introduced into this market for the same reason it is a soHd derivative of hydrazine, considered safer to handle because of its low vapor pressure. It hydrolyzes to release free hydrazine at elevated temperatures in the boiler. It is, however, fairly expensive and contributes to dissolved soHds (carbonates) in the water (193). In field tests, catalyzed hydrazine outperformed both hydrazine and carbohydrazide when the feedwater oxygen and iron levels were critical (194). A pubUshed comparison is available (195) of these and other proposed oxygen scavengers, eg, diethyUiydroxylarnine, ydroquinone, methyethylketoxime, and isoascorbic acid. [Pg.291]

Lithium Iodide. Lithium iodide [10377-51 -2/, Lil, is the most difficult lithium halide to prepare and has few appHcations. Aqueous solutions of the salt can be prepared by carehil neutralization of hydroiodic acid with lithium carbonate or lithium hydroxide. Concentration of the aqueous solution leads successively to the trihydrate [7790-22-9] dihydrate [17023-25-5] and monohydrate [17023-24 ] which melt congmendy at 75, 79, and 130°C, respectively. The anhydrous salt can be obtained by carehil removal of water under vacuum, but because of the strong tendency to oxidize and eliminate iodine which occurs on heating the salt ia air, it is often prepared from reactions of lithium metal or lithium hydride with iodine ia organic solvents. The salt is extremely soluble ia water (62.6 wt % at 25°C) (59) and the solutions have extremely low vapor pressures (60). Lithium iodide is used as an electrolyte ia selected lithium battery appHcations, where it is formed in situ from reaction of lithium metal with iodine. It can also be a component of low melting molten salts and as a catalyst ia aldol condensations. [Pg.226]

Perfluoroall lpolyethers. While high cost has limited general use, these fluids are remarkably stable chemically, have good viscosity—temperature characteristics, low pour poiats, and quite low vapor pressures (42,43). [Pg.246]

Most inorganic mercury compounds have very low vapor pressures, and generally do not contribute to high mercury vapor readings. MetaUic mercury is the most potent and troublesome in this respect. Organic mercurials also contribute to mercury vapor readings, possibly by virtue of the presence of extremely small amounts of metallic mercury present as an impurity. [Pg.116]

Reduction to Liquid Metal. Reduction to Hquid metal is the most common metal reduction process. It is preferred for metals of moderate melting point and low vapor pressure. Because most metallic compounds are fairly insoluble in molten metals, the separation of the Hquified metal from a sohd residue or from another Hquid phase of different density is usually complete and relatively simple. Because the product is in condensed form, the throughput per unit volume of reactor is high, and the number and si2e of the units is rninimi2ed. The common furnaces for production of Hquid metals are the blast furnace, the reverberatory furnace, the converter, the flash smelting furnace, and the electric-arc furnace (see Furnaces, electric). [Pg.166]

Tetrahydronaphthalene [119-64-2] (Tetralin) is a water-white Hquid that is insoluble in water, slightly soluble in methyl alcohol, and completely soluble in other monohydric alcohols, ethyl ether, and most other organic solvents. It is a powerhil solvent for oils, resins, waxes, mbber, asphalt, and aromatic hydrocarbons, eg, naphthalene and anthracene. Its high flash point and low vapor pressure make it usehil in the manufacture of paints, lacquers, and varnishes for cleaning printing ink from rollers and type in the manufacture of shoe creams and floor waxes as a solvent in the textile industry and for the removal of naphthalene deposits in gas-distribution systems (25). The commercial product typically has a tetrahydronaphthalene content of >97 wt%, with some decahydronaphthalene and naphthalene as the principal impurities. [Pg.483]

Evaporation Retardants. Small molecule solvents that make up the most effective paint removers also have high vapor pressure and evaporate easily, sometimes before the remover has time to penetrate the finish. Low vapor pressure cosolvents are added to help reduce evaporation. The best approach has been to add a low melting point paraffin wax (mp = 46-57° C) to the paint remover formulation. When evaporation occurs the solvent is chilled and the wax is shocked-out forming a film on the surface of the remover that acts as a barrier to evaporation (5,6). The addition of certain esters enhances the effectiveness of the wax film. It is important not to break the wax film with excessive bmshing or scraping until the remover has penetrated and lifted the finish from the substrate. Likewise, it is important that the remover be used at warm temperatures, since at cool temperatures the wax film may not form, or if it does it will be brittle and fracture. Rapid evaporation occurs when the wax film is absent or broken. [Pg.550]

Health and Safety. Both N-methylpyrrohdinone and dibasic esters have very low vapor pressure which limits worker exposure to vapors. Manufacturers recommend that the same safety precautions be taken as with other organic solvents. Ha2ardous location requirements must be considered if the formula is flammable. Ventilation that reduces vapors to manufacturer s recommended exposure levels should be used. [Pg.552]

Environmental Impact. The volume of waste remover from these products is remarkably increased when compared to methylene chloride, petroleum, and oxygenate removers, since both /V-methy1pyrro1idinone and dibasic esters have low vapor pressures. Recovery of the remover after use is difficult because the finish is tesolubili2ed by the remover. A representative dibasic ester formula appears below for a thickened water rinse finish remover. [Pg.552]

PPO and EOPO copolymers are low hazard—low vapor pressure hquids. Contact with skin, eyes, or inhalation cause irritation. There are no known acute or chronic affects associated with polyols. First aid for contact with polyols involves washing the affected area with water. The flash point of PPO is greater than 93°C. [Pg.355]

Potassium, a soft, low density, silver-colored metal, has high thermal and electrical conductivities, and very low ionization energy. One useful physical property of potassium is that it forms Hquid alloys with other alkah metals such as Na, Rb, and Cs. These alloys have very low vapor pressures and melting points. [Pg.515]

Vapor Toxicity. Laboratory exposure data indicate that vapor inhalation of alkan olamines presents low hazards at ordinary temperatures (generally, alkan olamines have low vapor pressures). Heated material may cause generation of sufficient vapors to cause adverse effects, including eye and nose irritation. If inhalation exposure is likely, approved respirators are suggested. Monoethan olamine and diethanolamine have OSHA TLVs of 3 ppm. [Pg.9]

Propane and light ends are rejected by touting a portion of the compressor discharge to the depropanizer column. The reactor effluent is treated prior to debutanization to remove residual esters by means of acid and alkaline water washes. The deisobutanizer is designed to provide a high purity isobutane stream for recycle to the reactor, a sidecut normal butane stream, and a low vapor pressure alkylate product. [Pg.46]

Some alkylphenols in commercial production have low vapor pressures and/or low thermal decomposition temperatures. Eor these products, the economics of distillation are poor and other recovery processes are used. Crystallisation from a solvent is the most common nondistUlation method for the purification of these alkylphenols. [Pg.64]

Chlorine fluxing of aluminum to remove hydrogen and undesirable metallic impurities has largely been supplanted by fumeless fluxing procedures, which generally employ a low vapor pressure melt of alkaU chlorides containing a small amount of aluminum chloride as the active ingredient. [Pg.105]

The Rectisol process is more readily appHcable for acid gas removal from synthesis gas made by partial oxidation of heavy feedstocks. The solvents used in Purisol, Fluor Solvent, and Selexol processes have low vapor pressures and hence solution losses are minimal. Absorption systems are generally corrosion-free. [Pg.349]

Humectants and low vapor pressure cosolvents are added to inhibit drying of ink in the no22les. Surfactants or cosolvents that lower surface tension are added to promote absorption of ink vehicle by the paper and to prevent bleed. For improvements in durabiUty, additional materials such as film-forming polymers have been added. Ink developments are providing ink-jet prints with improved lightfastness, waterfastness, and durabiUty. As a result, such prints are beginning to rival the quaUty of electrophotographic prints. [Pg.54]

As this suggests, the penalty becomes large for low vapor pressure materials, ie, for components that are distilled at or below atmospheric pressure. The work penalty associated with this AT is approximately defined by the following ratio. [Pg.85]

Decarboxylation of sahcyhc acid takes place with slow heating because of the presence of the electronic configuration of the carboxyl group ortho to the hydroxyl group, but does not occur in the other isomers of hydroxyben2oic acid. On rapid heating, sahcyhc acid sublimes because of its low vapor pressure. This property allows commercial separation from the other isomers as a means of purification analogous to distillation. The differences ia the vapor pressures are shown ia Table 4. [Pg.285]


See other pages where Low vapor pressure is mentioned: [Pg.103]    [Pg.80]    [Pg.277]    [Pg.88]    [Pg.314]    [Pg.350]    [Pg.365]    [Pg.369]    [Pg.505]    [Pg.97]    [Pg.276]    [Pg.400]    [Pg.457]    [Pg.459]    [Pg.293]    [Pg.552]    [Pg.10]    [Pg.251]    [Pg.163]    [Pg.219]    [Pg.227]    [Pg.278]    [Pg.285]    [Pg.287]   
See also in sourсe #XX -- [ Pg.236 ]

See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.739 ]




SEARCH



Low pressure

© 2024 chempedia.info