Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium traps

Zuo J, Pandey R and Kunz A B 1991 Embedded-oluster study of the lithium trapped-hole oenter In magnesium oxide Phys. Rev. B 44 7187-91... [Pg.2234]

The presumed intermediate allylic ions of type (212, R = H) may also be generated from methylenecyclopropane by reaction with eg., butyl lithium trapping by carbonyl compounds occurs by bond formation from C2 145), although when R = SiMe3 trapping by benzaldehyde occurs only at C1, and probably involves an electron transfer process 146). [Pg.170]

Lithium Trapped-Hole Centre in Magnesium Oxide. An Ab-Initio Supercell Study. [Pg.124]

Our own synthesis of the raw materials (PFA) brought unforeseen benefits. We found that the addition of phosphorus (and boron by analogy) to carbon is quite effective in increasing the lithium trapping capability [4-6]. [Pg.24]

The phosphonates (31) react with aldehydes and ketones to give 2-azadienes which form metallo-enamines on reaction with butyl-lithium trapping of these metallo-enamines occurred with a high degree of regioselectivity (Scheme 46). ... [Pg.68]

After the air in the flask had been completely replaced with nitrogen, it was cooled in a liquid nitrogen bath and a solution of 25 g of acetylene in 160 ml of dry THF was introduced. The solution had been prepared by dissolving acetylene (freed from acetone by means of a cold trap) in THF cooled at -80 to -90°C. A solution of 0.21 mol of butyl lithium in about 150 ml of hexane was added in 5 min to the vigorously stirred solution. During this addition the temperature of the mixture was kept between -80 and -100°C by occasionally dipping the flask into the liquid nitrogen. To the white suspension were successively added at -80°C a solution of 10 g. of anhydrous lithium bromide (note 1) in 30 ml of THF and 0.20 mol of freshly distilled benzaldehyde. The reaction mixture was kept for 3 h at -69°C, after which the temperature was allowed to rise to +10°C over a period of 2 h. [Pg.80]

The ketone is added to a large excess of a strong base at low temperature, usually LDA in THF at -78 °C. The more acidic and less sterically hindered proton is removed in a kineti-cally controlled reaction. The equilibrium with a thermodynamically more stable enolate (generally the one which is more stabilized by substituents) is only reached very slowly (H.O. House, 1977), and the kinetic enolates may be trapped and isolated as silyl enol ethers (J.K. Rasmussen, 1977 H.O. House, 1969). If, on the other hand, a weak acid is added to the solution, e.g. an excess of the non-ionized ketone or a non-nucleophilic alcohol such as cert-butanol, then the tautomeric enolate is preferentially formed (stabilized mostly by hyperconjugation effects). The rate of approach to equilibrium is particularly slow with lithium as the counterion and much faster with potassium or sodium. [Pg.11]

The function of the trap is to condense the hexane from the n-butyl-lithium solution. The checkers used a 1-L three-necked flask fitted with a short delivery tube (a quick fit air bleed tube was used), stopper, and rubber tubing connection. The submitters used a water aspirator and a 1-L filter flask with a drying tower between. [Pg.61]

The preparation of 17j -hydroxy-4a-methyl-5a-androstan-3-one (3) which cannot be obtained by direct alkylation or via formyl or oxalyl ketones was achieved by Schaub in 40% yield by the Stork " alkylation procedure. As discussed in the introduction this method proceeds by trapping the A -enolate (2), obtained from (1) and lithium in liquid ammonia, with methyl iodide. [Pg.97]

Lithium silylamides react smoothly with tiifluoronitrosomethane to give diazenes Traces ot water initiate the decomposition of the latter with liberation of a trifluoromethyl carbanion, which is trapped by carbonyl compounds [775] (equation 116) Desilylation of trialkyl(trifluoromethyl)silanes by fluoride ion produces also a trifluoromethyl carbanion, which adds to carbonyl carbon atoms [136, 137] (equations 117 and 118)... [Pg.478]

Simultaneous elimination of chloride ion and carbon dioxide occurs dunng heating of methyl chlorodifluoroacetate with lithium chloride in hexamethyl-phosphoric tnamide (HMPA) The difluorocarbene generated in this way is trapped by electron-rich alkenes to form 1,1-difluorocyclopropanes [26] (equation 24)... [Pg.894]

Pyridyne (26) has been shown to exist by trapping it with furan. It must be considered to be an intermediate in the reaction of 3-bromo-2-chloropyridine (49) with lithium amalgam because in the presence of furan a small amount (2%) of quinoline (50) is formed. ... [Pg.132]

In the plasma 8Q% of the energy produced by the D-T reactions is in the form of energetic NEUTRONS which escape across the magnetic field and are then trapped in a surrounding blanket which contains LITHIUM. [Pg.873]

Interestingly, treatment of bicyclic imidate 5 (R = OMe) with lithium diisopropylamide at — 78 C, followed by addition of iodomethane and quenching into ammonium chloride solution, gives 2-methoxy-3-methyl-37/-azepine. In the absence of iodomethane, 2-methoxy-3i/-azepine (6, R = OMe) is produced. Rearrangement of the lithiated bicycle to a lithiated 2-methoxy-3//-azepine, followed by regioselective trapping by the electrophile, is the most likely mechanistic rationale. [Pg.130]

Use of LTMP as base [52] in situ with Me3SiCl allows straightforward access to a variety of synthetically useful a, 3-epoxysilanes 232 at near ambient temperature directly from (enantiopure) terminal epoxides 231 (Scheme 5.55) [81]. This reaction relies on the fact that the hindered lithium amide LTMP is compatible with Me3SiCl under the reaction conditions and that the electrophile trapping of the nonstabilized lithiated epoxide intermediate must be very rapid, since the latter are usually thermally very labile. [Pg.172]

Vedejs et al. demonstrated that lithium-tin exchange is a feasible route to nonstabilized lithiated aziridines. Treatment of stannylaziridine 258 with n-BuLi gave lithiated aziridine 259, which could be trapped with a variety of electrophiles such as benzaldehyde (Scheme 5.66) [92]. Furthermore, simple N-alkyl aziridine 261 can be activated by Fewis acid precomplexation to BH3 (to give 262) and subsequently... [Pg.175]

Unsymmetrically substituted pentadienyl anions populate six planar conformations, which are in equilibration13 a 18. The energy barrier for a torsion in the potassium compound (R = primary alkyl) was estimated to be approximately 35 keal/mol for the 1,2-bond and 15 keal/mol for the 2,3- and 3,4-bonds. The barriers are much lower in the lithium compound. Not only the rate, but also the position of the equilibrium is greatly influenced by the cation from trapping experiments18 it was concluded that the exo-VJ anion is most stable for lithium and the exo-U form for potassium. [Pg.231]

Enantioselective deprotonation of prochiral 4-alkylcyclohexanones using certain lithium amide bases derived from chiral amines such as (1) has been shown (73) to generate chiral lithium enolates, which can be trapped and used further as the corresponding trimethylsilyl enol ethers trapping was achieved using Corey s internal quench described above. [Pg.62]

Potassium or lithium derivatives of ethyl acetate, dimethyl acetamide, acetonitrile, acetophenone, pinacolone and (trimethylsilyl)acetylene are known to undergo conjugate addition to 3-(t-butyldimethylsiloxy)-1 -cyclohexenyl t-butyl sulfone 328. The resulting a-sulfonyl carbanions 329 can be trapped stereospecifically by electrophiles such as water and methyl iodide417. When the nucleophile was an sp3-hybridized primary anion (Nu = CH2Y), the resulting product was mainly 330, while in the reaction with (trimethylsilyl)acetylide anion the main product was 331. [Pg.646]

The a-sulfonyl carbanions can be trapped with a variety of electrophiles19. The method provides a synthetically useful synthon for a propylene 1,3-dipole. Reductive cleavage of the sulfone 28 thus prepared, with lithium phenanthrenide in THF, furnishes bicyclooctane 29 (equation 19)16. [Pg.767]

Finally, an ingenious synthetic sequence by Trost, Cossy and Burks201 includes a unique desulphonylation reaction that involves an electron-transfer process. The synthetic sequence uses 1, l-bis(phenylsulphonyl)cyclopropane as a source of three carbon atoms, since this species is readily alkylated even by weakly nucleophilic species. Given an appropriate structure for the nucleophile, Trost found that desulphonylation with lithium phenanthrenide in an aprotic solvent allowed for an efficient intramolecular trapping of the resultant carbanion (equation 88). This desulphonylation process occurs under very mild conditions and in high yields it will undoubtedly attract further interest. [Pg.961]


See other pages where Lithium traps is mentioned: [Pg.429]    [Pg.151]    [Pg.419]    [Pg.21]    [Pg.419]    [Pg.227]    [Pg.429]    [Pg.151]    [Pg.419]    [Pg.21]    [Pg.419]    [Pg.227]    [Pg.79]    [Pg.60]    [Pg.140]    [Pg.11]    [Pg.152]    [Pg.96]    [Pg.156]    [Pg.334]    [Pg.219]    [Pg.325]    [Pg.429]    [Pg.215]    [Pg.594]    [Pg.773]    [Pg.155]    [Pg.436]    [Pg.132]    [Pg.55]    [Pg.144]    [Pg.281]    [Pg.765]    [Pg.829]    [Pg.960]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Lithium-metal traps

© 2024 chempedia.info